Properties

Label 728.2.i.a.701.2
Level $728$
Weight $2$
Character 728.701
Analytic conductor $5.813$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [728,2,Mod(701,728)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(728, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("728.701");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.i (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 701.2
Character \(\chi\) \(=\) 728.701
Dual form 728.2.i.a.701.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.40496 + 0.161540i) q^{2} -2.58827i q^{3} +(1.94781 - 0.453913i) q^{4} -1.51724 q^{5} +(0.418108 + 3.63640i) q^{6} -1.00000i q^{7} +(-2.66326 + 0.952378i) q^{8} -3.69913 q^{9} +(2.13165 - 0.245094i) q^{10} -1.15039 q^{11} +(-1.17485 - 5.04145i) q^{12} +(3.39762 - 1.20671i) q^{13} +(0.161540 + 1.40496i) q^{14} +3.92702i q^{15} +(3.58793 - 1.76827i) q^{16} +0.0878473 q^{17} +(5.19711 - 0.597556i) q^{18} -8.25567 q^{19} +(-2.95529 + 0.688694i) q^{20} -2.58827 q^{21} +(1.61625 - 0.185834i) q^{22} -6.48403 q^{23} +(2.46501 + 6.89324i) q^{24} -2.69799 q^{25} +(-4.57858 + 2.24423i) q^{26} +1.80953i q^{27} +(-0.453913 - 1.94781i) q^{28} +2.75060i q^{29} +(-0.634370 - 5.51729i) q^{30} -5.46650i q^{31} +(-4.75524 + 3.06394i) q^{32} +2.97752i q^{33} +(-0.123422 + 0.0141908i) q^{34} +1.51724i q^{35} +(-7.20519 + 1.67908i) q^{36} +8.75613 q^{37} +(11.5989 - 1.33362i) q^{38} +(-3.12330 - 8.79396i) q^{39} +(4.04080 - 1.44498i) q^{40} +0.221622i q^{41} +(3.63640 - 0.418108i) q^{42} +11.3062i q^{43} +(-2.24075 + 0.522179i) q^{44} +5.61245 q^{45} +(9.10979 - 1.04743i) q^{46} +4.58078i q^{47} +(-4.57676 - 9.28651i) q^{48} -1.00000 q^{49} +(3.79056 - 0.435833i) q^{50} -0.227372i q^{51} +(6.07018 - 3.89268i) q^{52} +10.8067i q^{53} +(-0.292311 - 2.54231i) q^{54} +1.74542 q^{55} +(0.952378 + 2.66326i) q^{56} +21.3679i q^{57} +(-0.444331 - 3.86447i) q^{58} -3.96379 q^{59} +(1.78252 + 7.64908i) q^{60} -11.0547i q^{61} +(0.883058 + 7.68021i) q^{62} +3.69913i q^{63} +(6.18595 - 5.07287i) q^{64} +(-5.15500 + 1.83087i) q^{65} +(-0.480989 - 4.18329i) q^{66} -4.63551 q^{67} +(0.171110 - 0.0398751i) q^{68} +16.7824i q^{69} +(-0.245094 - 2.13165i) q^{70} -9.36899i q^{71} +(9.85175 - 3.52297i) q^{72} +10.4110i q^{73} +(-12.3020 + 1.41446i) q^{74} +6.98312i q^{75} +(-16.0805 + 3.74736i) q^{76} +1.15039i q^{77} +(5.80867 + 11.8506i) q^{78} +7.68869 q^{79} +(-5.44373 + 2.68289i) q^{80} -6.41384 q^{81} +(-0.0358007 - 0.311369i) q^{82} -5.19464 q^{83} +(-5.04145 + 1.17485i) q^{84} -0.133285 q^{85} +(-1.82640 - 15.8847i) q^{86} +7.11928 q^{87} +(3.06380 - 1.09561i) q^{88} +1.08552i q^{89} +(-7.88526 + 0.906635i) q^{90} +(-1.20671 - 3.39762i) q^{91} +(-12.6297 + 2.94319i) q^{92} -14.1488 q^{93} +(-0.739978 - 6.43580i) q^{94} +12.5258 q^{95} +(7.93030 + 12.3078i) q^{96} -10.4826i q^{97} +(1.40496 - 0.161540i) q^{98} +4.25545 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 84 q^{9} + 8 q^{10} - 20 q^{12} - 8 q^{16} + 8 q^{17} - 12 q^{22} - 24 q^{23} + 92 q^{25} - 40 q^{30} + 44 q^{36} + 20 q^{38} - 24 q^{39} - 28 q^{40} - 72 q^{48} - 84 q^{49} - 44 q^{52} + 32 q^{55}+ \cdots - 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.40496 + 0.161540i −0.993455 + 0.114226i
\(3\) 2.58827i 1.49434i −0.664635 0.747168i \(-0.731413\pi\)
0.664635 0.747168i \(-0.268587\pi\)
\(4\) 1.94781 0.453913i 0.973905 0.226957i
\(5\) −1.51724 −0.678529 −0.339265 0.940691i \(-0.610178\pi\)
−0.339265 + 0.940691i \(0.610178\pi\)
\(6\) 0.418108 + 3.63640i 0.170692 + 1.48456i
\(7\) 1.00000i 0.377964i
\(8\) −2.66326 + 0.952378i −0.941606 + 0.336716i
\(9\) −3.69913 −1.23304
\(10\) 2.13165 0.245094i 0.674088 0.0775056i
\(11\) −1.15039 −0.346857 −0.173428 0.984847i \(-0.555484\pi\)
−0.173428 + 0.984847i \(0.555484\pi\)
\(12\) −1.17485 5.04145i −0.339150 1.45534i
\(13\) 3.39762 1.20671i 0.942331 0.334682i
\(14\) 0.161540 + 1.40496i 0.0431734 + 0.375491i
\(15\) 3.92702i 1.01395i
\(16\) 3.58793 1.76827i 0.896981 0.442068i
\(17\) 0.0878473 0.0213061 0.0106531 0.999943i \(-0.496609\pi\)
0.0106531 + 0.999943i \(0.496609\pi\)
\(18\) 5.19711 0.597556i 1.22497 0.140845i
\(19\) −8.25567 −1.89398 −0.946990 0.321262i \(-0.895893\pi\)
−0.946990 + 0.321262i \(0.895893\pi\)
\(20\) −2.95529 + 0.688694i −0.660823 + 0.153997i
\(21\) −2.58827 −0.564806
\(22\) 1.61625 0.185834i 0.344586 0.0396200i
\(23\) −6.48403 −1.35201 −0.676007 0.736895i \(-0.736291\pi\)
−0.676007 + 0.736895i \(0.736291\pi\)
\(24\) 2.46501 + 6.89324i 0.503168 + 1.40708i
\(25\) −2.69799 −0.539598
\(26\) −4.57858 + 2.24423i −0.897934 + 0.440130i
\(27\) 1.80953i 0.348243i
\(28\) −0.453913 1.94781i −0.0857815 0.368101i
\(29\) 2.75060i 0.510773i 0.966839 + 0.255387i \(0.0822027\pi\)
−0.966839 + 0.255387i \(0.917797\pi\)
\(30\) −0.634370 5.51729i −0.115820 1.00731i
\(31\) 5.46650i 0.981813i −0.871212 0.490907i \(-0.836666\pi\)
0.871212 0.490907i \(-0.163334\pi\)
\(32\) −4.75524 + 3.06394i −0.840615 + 0.541633i
\(33\) 2.97752i 0.518321i
\(34\) −0.123422 + 0.0141908i −0.0211667 + 0.00243371i
\(35\) 1.51724i 0.256460i
\(36\) −7.20519 + 1.67908i −1.20087 + 0.279847i
\(37\) 8.75613 1.43950 0.719750 0.694234i \(-0.244256\pi\)
0.719750 + 0.694234i \(0.244256\pi\)
\(38\) 11.5989 1.33362i 1.88158 0.216342i
\(39\) −3.12330 8.79396i −0.500128 1.40816i
\(40\) 4.04080 1.44498i 0.638907 0.228472i
\(41\) 0.221622i 0.0346115i 0.999850 + 0.0173057i \(0.00550886\pi\)
−0.999850 + 0.0173057i \(0.994491\pi\)
\(42\) 3.63640 0.418108i 0.561109 0.0645155i
\(43\) 11.3062i 1.72417i 0.506760 + 0.862087i \(0.330843\pi\)
−0.506760 + 0.862087i \(0.669157\pi\)
\(44\) −2.24075 + 0.522179i −0.337805 + 0.0787214i
\(45\) 5.61245 0.836655
\(46\) 9.10979 1.04743i 1.34317 0.154435i
\(47\) 4.58078i 0.668175i 0.942542 + 0.334088i \(0.108428\pi\)
−0.942542 + 0.334088i \(0.891572\pi\)
\(48\) −4.57676 9.28651i −0.660599 1.34039i
\(49\) −1.00000 −0.142857
\(50\) 3.79056 0.435833i 0.536066 0.0616361i
\(51\) 0.227372i 0.0318385i
\(52\) 6.07018 3.89268i 0.841782 0.539817i
\(53\) 10.8067i 1.48441i 0.670171 + 0.742207i \(0.266221\pi\)
−0.670171 + 0.742207i \(0.733779\pi\)
\(54\) −0.292311 2.54231i −0.0397784 0.345964i
\(55\) 1.74542 0.235352
\(56\) 0.952378 + 2.66326i 0.127267 + 0.355894i
\(57\) 21.3679i 2.83025i
\(58\) −0.444331 3.86447i −0.0583435 0.507430i
\(59\) −3.96379 −0.516041 −0.258021 0.966139i \(-0.583070\pi\)
−0.258021 + 0.966139i \(0.583070\pi\)
\(60\) 1.78252 + 7.64908i 0.230123 + 0.987492i
\(61\) 11.0547i 1.41541i −0.706509 0.707704i \(-0.749731\pi\)
0.706509 0.707704i \(-0.250269\pi\)
\(62\) 0.883058 + 7.68021i 0.112149 + 0.975387i
\(63\) 3.69913i 0.466046i
\(64\) 6.18595 5.07287i 0.773244 0.634108i
\(65\) −5.15500 + 1.83087i −0.639399 + 0.227092i
\(66\) −0.480989 4.18329i −0.0592057 0.514928i
\(67\) −4.63551 −0.566317 −0.283159 0.959073i \(-0.591382\pi\)
−0.283159 + 0.959073i \(0.591382\pi\)
\(68\) 0.171110 0.0398751i 0.0207501 0.00483556i
\(69\) 16.7824i 2.02037i
\(70\) −0.245094 2.13165i −0.0292944 0.254781i
\(71\) 9.36899i 1.11190i −0.831217 0.555948i \(-0.812356\pi\)
0.831217 0.555948i \(-0.187644\pi\)
\(72\) 9.85175 3.52297i 1.16104 0.415185i
\(73\) 10.4110i 1.21851i 0.792974 + 0.609255i \(0.208532\pi\)
−0.792974 + 0.609255i \(0.791468\pi\)
\(74\) −12.3020 + 1.41446i −1.43008 + 0.164428i
\(75\) 6.98312i 0.806341i
\(76\) −16.0805 + 3.74736i −1.84456 + 0.429852i
\(77\) 1.15039i 0.131099i
\(78\) 5.80867 + 11.8506i 0.657703 + 1.34182i
\(79\) 7.68869 0.865045 0.432523 0.901623i \(-0.357624\pi\)
0.432523 + 0.901623i \(0.357624\pi\)
\(80\) −5.44373 + 2.68289i −0.608628 + 0.299956i
\(81\) −6.41384 −0.712649
\(82\) −0.0358007 0.311369i −0.00395353 0.0343849i
\(83\) −5.19464 −0.570186 −0.285093 0.958500i \(-0.592024\pi\)
−0.285093 + 0.958500i \(0.592024\pi\)
\(84\) −5.04145 + 1.17485i −0.550067 + 0.128187i
\(85\) −0.133285 −0.0144568
\(86\) −1.82640 15.8847i −0.196945 1.71289i
\(87\) 7.11928 0.763267
\(88\) 3.06380 1.09561i 0.326602 0.116792i
\(89\) 1.08552i 0.115064i 0.998344 + 0.0575322i \(0.0183232\pi\)
−0.998344 + 0.0575322i \(0.981677\pi\)
\(90\) −7.88526 + 0.906635i −0.831179 + 0.0955677i
\(91\) −1.20671 3.39762i −0.126498 0.356168i
\(92\) −12.6297 + 2.94319i −1.31673 + 0.306849i
\(93\) −14.1488 −1.46716
\(94\) −0.739978 6.43580i −0.0763229 0.663802i
\(95\) 12.5258 1.28512
\(96\) 7.93030 + 12.3078i 0.809383 + 1.25616i
\(97\) 10.4826i 1.06434i −0.846636 0.532172i \(-0.821376\pi\)
0.846636 0.532172i \(-0.178624\pi\)
\(98\) 1.40496 0.161540i 0.141922 0.0163180i
\(99\) 4.25545 0.427689
\(100\) −5.25517 + 1.22465i −0.525517 + 0.122465i
\(101\) 3.46200i 0.344482i 0.985055 + 0.172241i \(0.0551007\pi\)
−0.985055 + 0.172241i \(0.944899\pi\)
\(102\) 0.0367297 + 0.319448i 0.00363678 + 0.0316301i
\(103\) 5.66902 0.558586 0.279293 0.960206i \(-0.409900\pi\)
0.279293 + 0.960206i \(0.409900\pi\)
\(104\) −7.89952 + 6.44962i −0.774612 + 0.632437i
\(105\) 3.92702 0.383237
\(106\) −1.74571 15.1829i −0.169559 1.47470i
\(107\) 17.3294i 1.67530i −0.546208 0.837650i \(-0.683929\pi\)
0.546208 0.837650i \(-0.316071\pi\)
\(108\) 0.821368 + 3.52461i 0.0790362 + 0.339156i
\(109\) −11.0393 −1.05737 −0.528685 0.848818i \(-0.677315\pi\)
−0.528685 + 0.848818i \(0.677315\pi\)
\(110\) −2.45224 + 0.281955i −0.233812 + 0.0268833i
\(111\) 22.6632i 2.15110i
\(112\) −1.76827 3.58793i −0.167086 0.339027i
\(113\) −7.22371 −0.679550 −0.339775 0.940507i \(-0.610351\pi\)
−0.339775 + 0.940507i \(0.610351\pi\)
\(114\) −3.45177 30.0210i −0.323287 2.81172i
\(115\) 9.83782 0.917381
\(116\) 1.24853 + 5.35764i 0.115923 + 0.497444i
\(117\) −12.5682 + 4.46379i −1.16193 + 0.412677i
\(118\) 5.56895 0.640310i 0.512664 0.0589453i
\(119\) 0.0878473i 0.00805295i
\(120\) −3.74000 10.4587i −0.341414 0.954743i
\(121\) −9.67660 −0.879691
\(122\) 1.78577 + 15.5314i 0.161676 + 1.40614i
\(123\) 0.573616 0.0517212
\(124\) −2.48132 10.6477i −0.222829 0.956193i
\(125\) 11.6797 1.04466
\(126\) −0.597556 5.19711i −0.0532346 0.462996i
\(127\) −10.8980 −0.967043 −0.483521 0.875333i \(-0.660642\pi\)
−0.483521 + 0.875333i \(0.660642\pi\)
\(128\) −7.87153 + 8.12644i −0.695752 + 0.718283i
\(129\) 29.2634 2.57650
\(130\) 6.94680 3.40503i 0.609274 0.298641i
\(131\) 11.3300i 0.989908i 0.868919 + 0.494954i \(0.164815\pi\)
−0.868919 + 0.494954i \(0.835185\pi\)
\(132\) 1.35154 + 5.79965i 0.117636 + 0.504795i
\(133\) 8.25567i 0.715857i
\(134\) 6.51269 0.748819i 0.562611 0.0646881i
\(135\) 2.74548i 0.236293i
\(136\) −0.233961 + 0.0836638i −0.0200620 + 0.00717412i
\(137\) 5.25241i 0.448744i −0.974504 0.224372i \(-0.927967\pi\)
0.974504 0.224372i \(-0.0720331\pi\)
\(138\) −2.71103 23.5786i −0.230778 2.00714i
\(139\) 6.66621i 0.565421i 0.959205 + 0.282710i \(0.0912335\pi\)
−0.959205 + 0.282710i \(0.908766\pi\)
\(140\) 0.688694 + 2.95529i 0.0582053 + 0.249768i
\(141\) 11.8563 0.998479
\(142\) 1.51347 + 13.1630i 0.127007 + 1.10462i
\(143\) −3.90860 + 1.38820i −0.326854 + 0.116087i
\(144\) −13.2722 + 6.54107i −1.10602 + 0.545089i
\(145\) 4.17331i 0.346574i
\(146\) −1.68179 14.6270i −0.139186 1.21054i
\(147\) 2.58827i 0.213477i
\(148\) 17.0553 3.97453i 1.40194 0.326704i
\(149\) −17.9670 −1.47192 −0.735959 0.677027i \(-0.763268\pi\)
−0.735959 + 0.677027i \(0.763268\pi\)
\(150\) −1.12805 9.81099i −0.0921051 0.801064i
\(151\) 0.785249i 0.0639027i −0.999489 0.0319513i \(-0.989828\pi\)
0.999489 0.0319513i \(-0.0101722\pi\)
\(152\) 21.9870 7.86252i 1.78338 0.637734i
\(153\) −0.324958 −0.0262713
\(154\) −0.185834 1.61625i −0.0149750 0.130241i
\(155\) 8.29398i 0.666189i
\(156\) −10.0753 15.7112i −0.806668 1.25791i
\(157\) 11.0014i 0.878004i 0.898486 + 0.439002i \(0.144668\pi\)
−0.898486 + 0.439002i \(0.855332\pi\)
\(158\) −10.8023 + 1.24203i −0.859383 + 0.0988106i
\(159\) 27.9706 2.21821
\(160\) 7.21482 4.64873i 0.570382 0.367514i
\(161\) 6.48403i 0.511014i
\(162\) 9.01118 1.03609i 0.707985 0.0814030i
\(163\) −9.28282 −0.727087 −0.363543 0.931577i \(-0.618433\pi\)
−0.363543 + 0.931577i \(0.618433\pi\)
\(164\) 0.100597 + 0.431677i 0.00785530 + 0.0337083i
\(165\) 4.51761i 0.351696i
\(166\) 7.29824 0.839141i 0.566454 0.0651300i
\(167\) 9.91186i 0.767002i −0.923540 0.383501i \(-0.874718\pi\)
0.923540 0.383501i \(-0.125282\pi\)
\(168\) 6.89324 2.46501i 0.531825 0.190179i
\(169\) 10.0877 8.19992i 0.775976 0.630763i
\(170\) 0.187260 0.0215309i 0.0143622 0.00165134i
\(171\) 30.5388 2.33536
\(172\) 5.13202 + 22.0223i 0.391313 + 1.67918i
\(173\) 22.0729i 1.67817i −0.543999 0.839086i \(-0.683090\pi\)
0.543999 0.839086i \(-0.316910\pi\)
\(174\) −10.0023 + 1.15005i −0.758271 + 0.0871849i
\(175\) 2.69799i 0.203949i
\(176\) −4.12752 + 2.03421i −0.311124 + 0.153334i
\(177\) 10.2593i 0.771139i
\(178\) −0.175354 1.52510i −0.0131433 0.114311i
\(179\) 20.2249i 1.51168i −0.654756 0.755841i \(-0.727228\pi\)
0.654756 0.755841i \(-0.272772\pi\)
\(180\) 10.9320 2.54757i 0.814822 0.189884i
\(181\) 19.1349i 1.42229i −0.703048 0.711143i \(-0.748178\pi\)
0.703048 0.711143i \(-0.251822\pi\)
\(182\) 2.24423 + 4.57858i 0.166354 + 0.339387i
\(183\) −28.6125 −2.11510
\(184\) 17.2687 6.17525i 1.27307 0.455245i
\(185\) −13.2851 −0.976743
\(186\) 19.8784 2.28559i 1.45756 0.167588i
\(187\) −0.101059 −0.00739016
\(188\) 2.07928 + 8.92248i 0.151647 + 0.650739i
\(189\) 1.80953 0.131624
\(190\) −17.5982 + 2.02342i −1.27671 + 0.146794i
\(191\) −1.20317 −0.0870584 −0.0435292 0.999052i \(-0.513860\pi\)
−0.0435292 + 0.999052i \(0.513860\pi\)
\(192\) −13.1299 16.0109i −0.947571 1.15549i
\(193\) 16.6104i 1.19564i −0.801630 0.597820i \(-0.796034\pi\)
0.801630 0.597820i \(-0.203966\pi\)
\(194\) 1.69335 + 14.7276i 0.121576 + 1.05738i
\(195\) 4.73878 + 13.3425i 0.339351 + 0.955478i
\(196\) −1.94781 + 0.453913i −0.139129 + 0.0324224i
\(197\) 12.3136 0.877306 0.438653 0.898656i \(-0.355456\pi\)
0.438653 + 0.898656i \(0.355456\pi\)
\(198\) −5.97872 + 0.687425i −0.424889 + 0.0488532i
\(199\) −3.59829 −0.255076 −0.127538 0.991834i \(-0.540707\pi\)
−0.127538 + 0.991834i \(0.540707\pi\)
\(200\) 7.18546 2.56951i 0.508089 0.181692i
\(201\) 11.9979i 0.846269i
\(202\) −0.559251 4.86396i −0.0393487 0.342227i
\(203\) 2.75060 0.193054
\(204\) −0.103207 0.442878i −0.00722596 0.0310077i
\(205\) 0.336252i 0.0234849i
\(206\) −7.96474 + 0.915774i −0.554930 + 0.0638050i
\(207\) 23.9853 1.66709
\(208\) 10.0566 10.3375i 0.697301 0.716778i
\(209\) 9.49727 0.656940
\(210\) −5.51729 + 0.634370i −0.380729 + 0.0437757i
\(211\) 13.3979i 0.922352i −0.887309 0.461176i \(-0.847428\pi\)
0.887309 0.461176i \(-0.152572\pi\)
\(212\) 4.90530 + 21.0494i 0.336898 + 1.44568i
\(213\) −24.2495 −1.66155
\(214\) 2.79939 + 24.3471i 0.191363 + 1.66433i
\(215\) 17.1541i 1.16990i
\(216\) −1.72335 4.81925i −0.117259 0.327908i
\(217\) −5.46650 −0.371091
\(218\) 15.5097 1.78328i 1.05045 0.120779i
\(219\) 26.9463 1.82087
\(220\) 3.39974 0.792269i 0.229211 0.0534148i
\(221\) 0.298472 0.106007i 0.0200774 0.00713078i
\(222\) 3.66101 + 31.8408i 0.245711 + 2.13702i
\(223\) 15.4009i 1.03132i −0.856793 0.515660i \(-0.827547\pi\)
0.856793 0.515660i \(-0.172453\pi\)
\(224\) 3.06394 + 4.75524i 0.204718 + 0.317723i
\(225\) 9.98021 0.665347
\(226\) 10.1490 1.16692i 0.675102 0.0776222i
\(227\) 18.4841 1.22683 0.613417 0.789760i \(-0.289795\pi\)
0.613417 + 0.789760i \(0.289795\pi\)
\(228\) 9.69917 + 41.6206i 0.642343 + 2.75639i
\(229\) 9.79269 0.647119 0.323560 0.946208i \(-0.395120\pi\)
0.323560 + 0.946208i \(0.395120\pi\)
\(230\) −13.8217 + 1.58920i −0.911377 + 0.104789i
\(231\) 2.97752 0.195907
\(232\) −2.61961 7.32557i −0.171986 0.480947i
\(233\) −13.8891 −0.909903 −0.454952 0.890516i \(-0.650343\pi\)
−0.454952 + 0.890516i \(0.650343\pi\)
\(234\) 16.9368 8.30170i 1.10719 0.542699i
\(235\) 6.95013i 0.453376i
\(236\) −7.72071 + 1.79922i −0.502575 + 0.117119i
\(237\) 19.9004i 1.29267i
\(238\) 0.0141908 + 0.123422i 0.000919856 + 0.00800024i
\(239\) 3.54335i 0.229200i 0.993412 + 0.114600i \(0.0365587\pi\)
−0.993412 + 0.114600i \(0.963441\pi\)
\(240\) 6.94404 + 14.0898i 0.448236 + 0.909495i
\(241\) 2.53135i 0.163059i 0.996671 + 0.0815293i \(0.0259804\pi\)
−0.996671 + 0.0815293i \(0.974020\pi\)
\(242\) 13.5952 1.56316i 0.873933 0.100483i
\(243\) 22.0293i 1.41318i
\(244\) −5.01787 21.5324i −0.321236 1.37847i
\(245\) 1.51724 0.0969327
\(246\) −0.805906 + 0.0926618i −0.0513827 + 0.00590790i
\(247\) −28.0497 + 9.96223i −1.78476 + 0.633882i
\(248\) 5.20618 + 14.5587i 0.330593 + 0.924481i
\(249\) 13.4451i 0.852049i
\(250\) −16.4094 + 1.88673i −1.03782 + 0.119328i
\(251\) 28.4225i 1.79401i −0.442019 0.897006i \(-0.645738\pi\)
0.442019 0.897006i \(-0.354262\pi\)
\(252\) 1.67908 + 7.20519i 0.105772 + 0.453885i
\(253\) 7.45919 0.468955
\(254\) 15.3113 1.76046i 0.960713 0.110461i
\(255\) 0.344978i 0.0216034i
\(256\) 9.74642 12.6889i 0.609151 0.793054i
\(257\) 1.65015 0.102934 0.0514668 0.998675i \(-0.483610\pi\)
0.0514668 + 0.998675i \(0.483610\pi\)
\(258\) −41.1138 + 4.72720i −2.55963 + 0.294303i
\(259\) 8.75613i 0.544080i
\(260\) −9.20990 + 5.90611i −0.571174 + 0.366282i
\(261\) 10.1748i 0.629805i
\(262\) −1.83025 15.9182i −0.113073 0.983429i
\(263\) −13.6929 −0.844338 −0.422169 0.906517i \(-0.638731\pi\)
−0.422169 + 0.906517i \(0.638731\pi\)
\(264\) −2.83573 7.92993i −0.174527 0.488054i
\(265\) 16.3963i 1.00722i
\(266\) −1.33362 11.5989i −0.0817695 0.711172i
\(267\) 2.80960 0.171945
\(268\) −9.02909 + 2.10412i −0.551539 + 0.128529i
\(269\) 12.0078i 0.732128i −0.930590 0.366064i \(-0.880705\pi\)
0.930590 0.366064i \(-0.119295\pi\)
\(270\) 0.443505 + 3.85728i 0.0269908 + 0.234747i
\(271\) 3.02364i 0.183673i −0.995774 0.0918365i \(-0.970726\pi\)
0.995774 0.0918365i \(-0.0292737\pi\)
\(272\) 0.315190 0.155338i 0.0191112 0.00941876i
\(273\) −8.79396 + 3.12330i −0.532234 + 0.189031i
\(274\) 0.848474 + 7.37942i 0.0512582 + 0.445807i
\(275\) 3.10375 0.187163
\(276\) 7.61776 + 32.6889i 0.458535 + 1.96764i
\(277\) 22.1000i 1.32786i 0.747794 + 0.663931i \(0.231113\pi\)
−0.747794 + 0.663931i \(0.768887\pi\)
\(278\) −1.07686 9.36574i −0.0645857 0.561720i
\(279\) 20.2213i 1.21062i
\(280\) −1.44498 4.04080i −0.0863543 0.241484i
\(281\) 25.7594i 1.53668i 0.640044 + 0.768339i \(0.278916\pi\)
−0.640044 + 0.768339i \(0.721084\pi\)
\(282\) −16.6576 + 1.91526i −0.991943 + 0.114052i
\(283\) 1.31917i 0.0784165i 0.999231 + 0.0392083i \(0.0124836\pi\)
−0.999231 + 0.0392083i \(0.987516\pi\)
\(284\) −4.25271 18.2490i −0.252352 1.08288i
\(285\) 32.4201i 1.92040i
\(286\) 5.26717 2.58175i 0.311454 0.152662i
\(287\) 0.221622 0.0130819
\(288\) 17.5902 11.3339i 1.03651 0.667857i
\(289\) −16.9923 −0.999546
\(290\) 0.674156 + 5.86332i 0.0395878 + 0.344306i
\(291\) −27.1317 −1.59049
\(292\) 4.72567 + 20.2786i 0.276549 + 1.18671i
\(293\) −3.67811 −0.214878 −0.107439 0.994212i \(-0.534265\pi\)
−0.107439 + 0.994212i \(0.534265\pi\)
\(294\) −0.418108 3.63640i −0.0243846 0.212079i
\(295\) 6.01401 0.350149
\(296\) −23.3199 + 8.33915i −1.35544 + 0.484703i
\(297\) 2.08167i 0.120791i
\(298\) 25.2429 2.90239i 1.46228 0.168131i
\(299\) −22.0303 + 7.82437i −1.27405 + 0.452495i
\(300\) 3.16973 + 13.6018i 0.183005 + 0.785300i
\(301\) 11.3062 0.651677
\(302\) 0.126849 + 1.10324i 0.00729934 + 0.0634844i
\(303\) 8.96057 0.514772
\(304\) −29.6207 + 14.5983i −1.69887 + 0.837269i
\(305\) 16.7726i 0.960396i
\(306\) 0.456553 0.0524937i 0.0260994 0.00300087i
\(307\) 27.2095 1.55293 0.776463 0.630163i \(-0.217012\pi\)
0.776463 + 0.630163i \(0.217012\pi\)
\(308\) 0.522179 + 2.24075i 0.0297539 + 0.127678i
\(309\) 14.6729i 0.834715i
\(310\) −1.33981 11.6527i −0.0760961 0.661829i
\(311\) −14.8834 −0.843960 −0.421980 0.906605i \(-0.638665\pi\)
−0.421980 + 0.906605i \(0.638665\pi\)
\(312\) 16.6933 + 20.4461i 0.945074 + 1.15753i
\(313\) −11.4874 −0.649308 −0.324654 0.945833i \(-0.605248\pi\)
−0.324654 + 0.945833i \(0.605248\pi\)
\(314\) −1.77716 15.4564i −0.100291 0.872257i
\(315\) 5.61245i 0.316226i
\(316\) 14.9761 3.49000i 0.842472 0.196328i
\(317\) −13.0995 −0.735743 −0.367872 0.929877i \(-0.619913\pi\)
−0.367872 + 0.929877i \(0.619913\pi\)
\(318\) −39.2975 + 4.51837i −2.20370 + 0.253378i
\(319\) 3.16427i 0.177165i
\(320\) −9.38556 + 7.69674i −0.524669 + 0.430261i
\(321\) −44.8532 −2.50346
\(322\) −1.04743 9.10979i −0.0583710 0.507669i
\(323\) −0.725239 −0.0403534
\(324\) −12.4929 + 2.91133i −0.694053 + 0.161740i
\(325\) −9.16676 + 3.25570i −0.508480 + 0.180594i
\(326\) 13.0420 1.49955i 0.722328 0.0830522i
\(327\) 28.5726i 1.58007i
\(328\) −0.211067 0.590237i −0.0116542 0.0325904i
\(329\) 4.58078 0.252546
\(330\) 0.729774 + 6.34705i 0.0401728 + 0.349394i
\(331\) −21.5841 −1.18637 −0.593183 0.805067i \(-0.702129\pi\)
−0.593183 + 0.805067i \(0.702129\pi\)
\(332\) −10.1182 + 2.35792i −0.555307 + 0.129407i
\(333\) −32.3900 −1.77496
\(334\) 1.60116 + 13.9257i 0.0876116 + 0.761982i
\(335\) 7.03317 0.384263
\(336\) −9.28651 + 4.57676i −0.506621 + 0.249683i
\(337\) 3.36280 0.183183 0.0915917 0.995797i \(-0.470805\pi\)
0.0915917 + 0.995797i \(0.470805\pi\)
\(338\) −12.8481 + 13.1501i −0.698847 + 0.715271i
\(339\) 18.6969i 1.01548i
\(340\) −0.259614 + 0.0604999i −0.0140796 + 0.00328107i
\(341\) 6.28863i 0.340548i
\(342\) −42.9057 + 4.93323i −2.32007 + 0.266759i
\(343\) 1.00000i 0.0539949i
\(344\) −10.7677 30.1113i −0.580558 1.62349i
\(345\) 25.4629i 1.37088i
\(346\) 3.56566 + 31.0115i 0.191691 + 1.66719i
\(347\) 10.4226i 0.559513i −0.960071 0.279756i \(-0.909746\pi\)
0.960071 0.279756i \(-0.0902537\pi\)
\(348\) 13.8670 3.23154i 0.743349 0.173228i
\(349\) 5.88538 0.315037 0.157519 0.987516i \(-0.449651\pi\)
0.157519 + 0.987516i \(0.449651\pi\)
\(350\) −0.435833 3.79056i −0.0232963 0.202614i
\(351\) 2.18358 + 6.14809i 0.116551 + 0.328161i
\(352\) 5.47039 3.52474i 0.291573 0.187869i
\(353\) 18.2921i 0.973592i 0.873516 + 0.486796i \(0.161834\pi\)
−0.873516 + 0.486796i \(0.838166\pi\)
\(354\) −1.65729 14.4139i −0.0880841 0.766092i
\(355\) 14.2150i 0.754453i
\(356\) 0.492730 + 2.11438i 0.0261146 + 0.112062i
\(357\) −0.227372 −0.0120338
\(358\) 3.26713 + 28.4151i 0.172673 + 1.50179i
\(359\) 10.4332i 0.550644i −0.961352 0.275322i \(-0.911216\pi\)
0.961352 0.275322i \(-0.0887845\pi\)
\(360\) −14.9474 + 5.34517i −0.787800 + 0.281715i
\(361\) 49.1561 2.58716
\(362\) 3.09105 + 26.8837i 0.162462 + 1.41298i
\(363\) 25.0456i 1.31455i
\(364\) −3.89268 6.07018i −0.204032 0.318164i
\(365\) 15.7959i 0.826795i
\(366\) 40.1993 4.62206i 2.10125 0.241599i
\(367\) 10.6000 0.553316 0.276658 0.960968i \(-0.410773\pi\)
0.276658 + 0.960968i \(0.410773\pi\)
\(368\) −23.2642 + 11.4655i −1.21273 + 0.597683i
\(369\) 0.819806i 0.0426774i
\(370\) 18.6650 2.14608i 0.970350 0.111569i
\(371\) 10.8067 0.561056
\(372\) −27.5591 + 6.42232i −1.42887 + 0.332982i
\(373\) 21.9283i 1.13540i 0.823235 + 0.567701i \(0.192167\pi\)
−0.823235 + 0.567701i \(0.807833\pi\)
\(374\) 0.141984 0.0163251i 0.00734179 0.000844149i
\(375\) 30.2301i 1.56108i
\(376\) −4.36263 12.1998i −0.224986 0.629158i
\(377\) 3.31918 + 9.34549i 0.170947 + 0.481317i
\(378\) −2.54231 + 0.292311i −0.130762 + 0.0150348i
\(379\) −10.9073 −0.560268 −0.280134 0.959961i \(-0.590379\pi\)
−0.280134 + 0.959961i \(0.590379\pi\)
\(380\) 24.3979 5.68563i 1.25159 0.291667i
\(381\) 28.2070i 1.44509i
\(382\) 1.69040 0.194360i 0.0864886 0.00994432i
\(383\) 11.6452i 0.595040i 0.954716 + 0.297520i \(0.0961594\pi\)
−0.954716 + 0.297520i \(0.903841\pi\)
\(384\) 21.0334 + 20.3736i 1.07336 + 1.03969i
\(385\) 1.74542i 0.0889548i
\(386\) 2.68324 + 23.3369i 0.136573 + 1.18781i
\(387\) 41.8229i 2.12598i
\(388\) −4.75818 20.4181i −0.241560 1.03657i
\(389\) 13.1587i 0.667172i −0.942720 0.333586i \(-0.891741\pi\)
0.942720 0.333586i \(-0.108259\pi\)
\(390\) −8.81314 17.9802i −0.446271 0.910461i
\(391\) −0.569605 −0.0288062
\(392\) 2.66326 0.952378i 0.134515 0.0481023i
\(393\) 29.3251 1.47926
\(394\) −17.3001 + 1.98913i −0.871564 + 0.100211i
\(395\) −11.6656 −0.586958
\(396\) 8.28881 1.93160i 0.416528 0.0970668i
\(397\) 2.01211 0.100985 0.0504925 0.998724i \(-0.483921\pi\)
0.0504925 + 0.998724i \(0.483921\pi\)
\(398\) 5.05544 0.581267i 0.253407 0.0291363i
\(399\) 21.3679 1.06973
\(400\) −9.68019 + 4.77079i −0.484010 + 0.238539i
\(401\) 3.32731i 0.166158i 0.996543 + 0.0830789i \(0.0264753\pi\)
−0.996543 + 0.0830789i \(0.973525\pi\)
\(402\) −1.93814 16.8566i −0.0966659 0.840730i
\(403\) −6.59651 18.5731i −0.328595 0.925193i
\(404\) 1.57145 + 6.74331i 0.0781824 + 0.335492i
\(405\) 9.73132 0.483553
\(406\) −3.86447 + 0.444331i −0.191790 + 0.0220518i
\(407\) −10.0730 −0.499300
\(408\) 0.216544 + 0.605553i 0.0107205 + 0.0299793i
\(409\) 35.5960i 1.76011i −0.474872 0.880055i \(-0.657506\pi\)
0.474872 0.880055i \(-0.342494\pi\)
\(410\) 0.0543182 + 0.472420i 0.00268258 + 0.0233312i
\(411\) −13.5947 −0.670575
\(412\) 11.0422 2.57325i 0.544009 0.126775i
\(413\) 3.96379i 0.195045i
\(414\) −33.6983 + 3.87458i −1.65618 + 0.190425i
\(415\) 7.88150 0.386888
\(416\) −12.4592 + 16.1483i −0.610862 + 0.791737i
\(417\) 17.2539 0.844929
\(418\) −13.3433 + 1.53419i −0.652640 + 0.0750396i
\(419\) 1.09920i 0.0536992i 0.999639 + 0.0268496i \(0.00854753\pi\)
−0.999639 + 0.0268496i \(0.991452\pi\)
\(420\) 7.64908 1.78252i 0.373237 0.0869783i
\(421\) 9.75651 0.475503 0.237752 0.971326i \(-0.423590\pi\)
0.237752 + 0.971326i \(0.423590\pi\)
\(422\) 2.16430 + 18.8235i 0.105357 + 0.916315i
\(423\) 16.9449i 0.823888i
\(424\) −10.2921 28.7811i −0.499827 1.39773i
\(425\) −0.237011 −0.0114967
\(426\) 34.0695 3.91726i 1.65067 0.189792i
\(427\) −11.0547 −0.534974
\(428\) −7.86606 33.7544i −0.380220 1.63158i
\(429\) 3.59302 + 10.1165i 0.173473 + 0.488430i
\(430\) 2.77108 + 24.1008i 0.133633 + 1.16225i
\(431\) 6.44866i 0.310621i 0.987866 + 0.155310i \(0.0496378\pi\)
−0.987866 + 0.155310i \(0.950362\pi\)
\(432\) 3.19974 + 6.49244i 0.153947 + 0.312368i
\(433\) −25.7879 −1.23929 −0.619643 0.784884i \(-0.712723\pi\)
−0.619643 + 0.784884i \(0.712723\pi\)
\(434\) 7.68021 0.883058i 0.368662 0.0423882i
\(435\) −10.8016 −0.517899
\(436\) −21.5024 + 5.01087i −1.02978 + 0.239977i
\(437\) 53.5301 2.56069
\(438\) −37.8585 + 4.35291i −1.80895 + 0.207990i
\(439\) −20.8825 −0.996668 −0.498334 0.866985i \(-0.666055\pi\)
−0.498334 + 0.866985i \(0.666055\pi\)
\(440\) −4.64851 + 1.66230i −0.221609 + 0.0792470i
\(441\) 3.69913 0.176149
\(442\) −0.402216 + 0.197150i −0.0191315 + 0.00937746i
\(443\) 1.97890i 0.0940205i −0.998894 0.0470103i \(-0.985031\pi\)
0.998894 0.0470103i \(-0.0149694\pi\)
\(444\) −10.2871 44.1436i −0.488206 2.09496i
\(445\) 1.64698i 0.0780745i
\(446\) 2.48786 + 21.6376i 0.117803 + 1.02457i
\(447\) 46.5035i 2.19954i
\(448\) −5.07287 6.18595i −0.239670 0.292259i
\(449\) 23.3403i 1.10150i −0.834671 0.550749i \(-0.814342\pi\)
0.834671 0.550749i \(-0.185658\pi\)
\(450\) −14.0218 + 1.61220i −0.660992 + 0.0759999i
\(451\) 0.254952i 0.0120052i
\(452\) −14.0704 + 3.27894i −0.661817 + 0.154228i
\(453\) −2.03243 −0.0954921
\(454\) −25.9694 + 2.98592i −1.21880 + 0.140136i
\(455\) 1.83087 + 5.15500i 0.0858326 + 0.241670i
\(456\) −20.3503 56.9083i −0.952990 2.66498i
\(457\) 12.8179i 0.599595i 0.954003 + 0.299798i \(0.0969191\pi\)
−0.954003 + 0.299798i \(0.903081\pi\)
\(458\) −13.7583 + 1.58191i −0.642884 + 0.0739178i
\(459\) 0.158962i 0.00741971i
\(460\) 19.1622 4.46552i 0.893442 0.208206i
\(461\) 30.2775 1.41016 0.705081 0.709127i \(-0.250911\pi\)
0.705081 + 0.709127i \(0.250911\pi\)
\(462\) −4.18329 + 0.480989i −0.194624 + 0.0223776i
\(463\) 0.839207i 0.0390013i 0.999810 + 0.0195006i \(0.00620764\pi\)
−0.999810 + 0.0195006i \(0.993792\pi\)
\(464\) 4.86381 + 9.86894i 0.225797 + 0.458154i
\(465\) 21.4670 0.995510
\(466\) 19.5136 2.24364i 0.903948 0.103935i
\(467\) 31.5327i 1.45916i −0.683895 0.729581i \(-0.739715\pi\)
0.683895 0.729581i \(-0.260285\pi\)
\(468\) −22.4544 + 14.3995i −1.03795 + 0.665617i
\(469\) 4.63551i 0.214048i
\(470\) 1.12272 + 9.76463i 0.0517873 + 0.450409i
\(471\) 28.4744 1.31203
\(472\) 10.5566 3.77502i 0.485908 0.173760i
\(473\) 13.0065i 0.598041i
\(474\) 3.21471 + 27.9592i 0.147656 + 1.28421i
\(475\) 22.2737 1.02199
\(476\) −0.0398751 0.171110i −0.00182767 0.00784281i
\(477\) 39.9753i 1.83035i
\(478\) −0.572392 4.97825i −0.0261806 0.227700i
\(479\) 37.3603i 1.70704i 0.521062 + 0.853519i \(0.325536\pi\)
−0.521062 + 0.853519i \(0.674464\pi\)
\(480\) −12.0321 18.6739i −0.549190 0.852342i
\(481\) 29.7500 10.5661i 1.35649 0.481775i
\(482\) −0.408914 3.55644i −0.0186255 0.161991i
\(483\) 16.7824 0.763626
\(484\) −18.8482 + 4.39234i −0.856735 + 0.199652i
\(485\) 15.9046i 0.722189i
\(486\) −3.55861 30.9502i −0.161422 1.40393i
\(487\) 38.6285i 1.75042i 0.483741 + 0.875211i \(0.339278\pi\)
−0.483741 + 0.875211i \(0.660722\pi\)
\(488\) 10.5282 + 29.4416i 0.476591 + 1.33276i
\(489\) 24.0264i 1.08651i
\(490\) −2.13165 + 0.245094i −0.0962983 + 0.0110722i
\(491\) 34.4399i 1.55425i −0.629346 0.777125i \(-0.716677\pi\)
0.629346 0.777125i \(-0.283323\pi\)
\(492\) 1.11729 0.260372i 0.0503715 0.0117385i
\(493\) 0.241633i 0.0108826i
\(494\) 37.7993 18.5277i 1.70067 0.833598i
\(495\) −6.45653 −0.290199
\(496\) −9.66627 19.6134i −0.434029 0.880668i
\(497\) −9.36899 −0.420257
\(498\) −2.17192 18.8898i −0.0973261 0.846472i
\(499\) −4.62862 −0.207205 −0.103603 0.994619i \(-0.533037\pi\)
−0.103603 + 0.994619i \(0.533037\pi\)
\(500\) 22.7498 5.30156i 1.01740 0.237093i
\(501\) −25.6545 −1.14616
\(502\) 4.59137 + 39.9324i 0.204923 + 1.78227i
\(503\) 32.9666 1.46991 0.734954 0.678117i \(-0.237204\pi\)
0.734954 + 0.678117i \(0.237204\pi\)
\(504\) −3.52297 9.85175i −0.156925 0.438832i
\(505\) 5.25267i 0.233741i
\(506\) −10.4798 + 1.20496i −0.465886 + 0.0535668i
\(507\) −21.2236 26.1096i −0.942572 1.15957i
\(508\) −21.2273 + 4.94676i −0.941808 + 0.219477i
\(509\) 4.90267 0.217307 0.108654 0.994080i \(-0.465346\pi\)
0.108654 + 0.994080i \(0.465346\pi\)
\(510\) −0.0557277 0.484679i −0.00246766 0.0214620i
\(511\) 10.4110 0.460554
\(512\) −11.6435 + 19.4017i −0.514577 + 0.857444i
\(513\) 14.9389i 0.659566i
\(514\) −2.31839 + 0.266565i −0.102260 + 0.0117577i
\(515\) −8.60126 −0.379017
\(516\) 56.9995 13.2830i 2.50926 0.584753i
\(517\) 5.26970i 0.231761i
\(518\) 1.41446 + 12.3020i 0.0621480 + 0.540519i
\(519\) −57.1306 −2.50775
\(520\) 11.9854 9.78560i 0.525597 0.429127i
\(521\) 6.67667 0.292510 0.146255 0.989247i \(-0.453278\pi\)
0.146255 + 0.989247i \(0.453278\pi\)
\(522\) 1.64364 + 14.2952i 0.0719400 + 0.625682i
\(523\) 19.5635i 0.855451i 0.903909 + 0.427726i \(0.140685\pi\)
−0.903909 + 0.427726i \(0.859315\pi\)
\(524\) 5.14285 + 22.0687i 0.224666 + 0.964077i
\(525\) 6.98312 0.304768
\(526\) 19.2379 2.21194i 0.838812 0.0964453i
\(527\) 0.480218i 0.0209186i
\(528\) 5.26508 + 10.6831i 0.229133 + 0.464924i
\(529\) 19.0427 0.827944
\(530\) 2.64866 + 23.0361i 0.115050 + 1.00063i
\(531\) 14.6626 0.636301
\(532\) 3.74736 + 16.0805i 0.162469 + 0.697177i
\(533\) 0.267434 + 0.752986i 0.0115838 + 0.0326155i
\(534\) −3.94737 + 0.453863i −0.170820 + 0.0196406i
\(535\) 26.2929i 1.13674i
\(536\) 12.3456 4.41475i 0.533248 0.190688i
\(537\) −52.3475 −2.25896
\(538\) 1.93974 + 16.8704i 0.0836280 + 0.727336i
\(539\) 1.15039 0.0495509
\(540\) −1.24621 5.34767i −0.0536283 0.230127i
\(541\) 37.0198 1.59160 0.795802 0.605557i \(-0.207050\pi\)
0.795802 + 0.605557i \(0.207050\pi\)
\(542\) 0.488439 + 4.24809i 0.0209802 + 0.182471i
\(543\) −49.5262 −2.12537
\(544\) −0.417735 + 0.269159i −0.0179102 + 0.0115401i
\(545\) 16.7492 0.717457
\(546\) 11.8506 5.80867i 0.507159 0.248588i
\(547\) 44.1142i 1.88619i 0.332526 + 0.943094i \(0.392099\pi\)
−0.332526 + 0.943094i \(0.607901\pi\)
\(548\) −2.38414 10.2307i −0.101845 0.437034i
\(549\) 40.8927i 1.74526i
\(550\) −4.36064 + 0.501379i −0.185938 + 0.0213789i
\(551\) 22.7080i 0.967394i
\(552\) −15.9832 44.6960i −0.680290 1.90239i
\(553\) 7.68869i 0.326956i
\(554\) −3.57004 31.0496i −0.151676 1.31917i
\(555\) 34.3855i 1.45958i
\(556\) 3.02588 + 12.9845i 0.128326 + 0.550666i
\(557\) 12.6022 0.533972 0.266986 0.963700i \(-0.413972\pi\)
0.266986 + 0.963700i \(0.413972\pi\)
\(558\) −3.26655 28.4100i −0.138284 1.20269i
\(559\) 13.6433 + 38.4141i 0.577051 + 1.62474i
\(560\) 2.68289 + 5.44373i 0.113373 + 0.230040i
\(561\) 0.261568i 0.0110434i
\(562\) −4.16117 36.1909i −0.175528 1.52662i
\(563\) 4.78407i 0.201625i −0.994905 0.100812i \(-0.967856\pi\)
0.994905 0.100812i \(-0.0321442\pi\)
\(564\) 23.0938 5.38172i 0.972423 0.226611i
\(565\) 10.9601 0.461094
\(566\) −0.213099 1.85338i −0.00895720 0.0779033i
\(567\) 6.41384i 0.269356i
\(568\) 8.92282 + 24.9521i 0.374393 + 1.04697i
\(569\) 28.1257 1.17909 0.589545 0.807736i \(-0.299307\pi\)
0.589545 + 0.807736i \(0.299307\pi\)
\(570\) 5.23715 + 45.5489i 0.219360 + 1.90783i
\(571\) 9.67429i 0.404856i −0.979297 0.202428i \(-0.935117\pi\)
0.979297 0.202428i \(-0.0648833\pi\)
\(572\) −6.98309 + 4.47811i −0.291978 + 0.187239i
\(573\) 3.11413i 0.130095i
\(574\) −0.311369 + 0.0358007i −0.0129963 + 0.00149429i
\(575\) 17.4939 0.729545
\(576\) −22.8826 + 18.7652i −0.953443 + 0.781882i
\(577\) 5.85466i 0.243732i 0.992547 + 0.121866i \(0.0388879\pi\)
−0.992547 + 0.121866i \(0.961112\pi\)
\(578\) 23.8734 2.74493i 0.993004 0.114174i
\(579\) −42.9921 −1.78669
\(580\) −1.89432 8.12881i −0.0786574 0.337531i
\(581\) 5.19464i 0.215510i
\(582\) 38.1189 4.38285i 1.58008 0.181675i
\(583\) 12.4320i 0.514879i
\(584\) −9.91517 27.7271i −0.410293 1.14736i
\(585\) 19.0690 6.77262i 0.788406 0.280014i
\(586\) 5.16759 0.594162i 0.213471 0.0245446i
\(587\) −42.1940 −1.74153 −0.870766 0.491698i \(-0.836376\pi\)
−0.870766 + 0.491698i \(0.836376\pi\)
\(588\) 1.17485 + 5.04145i 0.0484499 + 0.207906i
\(589\) 45.1297i 1.85954i
\(590\) −8.44942 + 0.971502i −0.347857 + 0.0399961i
\(591\) 31.8708i 1.31099i
\(592\) 31.4164 15.4832i 1.29120 0.636357i
\(593\) 19.0752i 0.783325i −0.920109 0.391663i \(-0.871900\pi\)
0.920109 0.391663i \(-0.128100\pi\)
\(594\) 0.336272 + 2.92465i 0.0137974 + 0.120000i
\(595\) 0.133285i 0.00546416i
\(596\) −34.9964 + 8.15548i −1.43351 + 0.334061i
\(597\) 9.31334i 0.381169i
\(598\) 29.6877 14.5517i 1.21402 0.595063i
\(599\) −3.43267 −0.140255 −0.0701275 0.997538i \(-0.522341\pi\)
−0.0701275 + 0.997538i \(0.522341\pi\)
\(600\) −6.65057 18.5979i −0.271508 0.759256i
\(601\) −38.6990 −1.57857 −0.789283 0.614029i \(-0.789548\pi\)
−0.789283 + 0.614029i \(0.789548\pi\)
\(602\) −15.8847 + 1.82640i −0.647411 + 0.0744384i
\(603\) 17.1473 0.698293
\(604\) −0.356435 1.52952i −0.0145031 0.0622351i
\(605\) 14.6817 0.596896
\(606\) −12.5892 + 1.44749i −0.511402 + 0.0588003i
\(607\) 17.5335 0.711664 0.355832 0.934550i \(-0.384197\pi\)
0.355832 + 0.934550i \(0.384197\pi\)
\(608\) 39.2577 25.2949i 1.59211 1.02584i
\(609\) 7.11928i 0.288488i
\(610\) −2.70944 23.5648i −0.109702 0.954110i
\(611\) 5.52769 + 15.5638i 0.223626 + 0.629642i
\(612\) −0.632957 + 0.147503i −0.0255858 + 0.00596245i
\(613\) −17.9396 −0.724574 −0.362287 0.932067i \(-0.618004\pi\)
−0.362287 + 0.932067i \(0.618004\pi\)
\(614\) −38.2281 + 4.39541i −1.54276 + 0.177384i
\(615\) −0.870311 −0.0350943
\(616\) −1.09561 3.06380i −0.0441433 0.123444i
\(617\) 11.0038i 0.442995i −0.975161 0.221498i \(-0.928906\pi\)
0.975161 0.221498i \(-0.0710945\pi\)
\(618\) 2.37027 + 20.6149i 0.0953461 + 0.829252i
\(619\) −43.6123 −1.75293 −0.876464 0.481467i \(-0.840104\pi\)
−0.876464 + 0.481467i \(0.840104\pi\)
\(620\) 3.76475 + 16.1551i 0.151196 + 0.648805i
\(621\) 11.7330i 0.470830i
\(622\) 20.9105 2.40426i 0.838436 0.0964022i
\(623\) 1.08552 0.0434902
\(624\) −26.7563 26.0292i −1.07111 1.04200i
\(625\) −4.23089 −0.169236
\(626\) 16.1393 1.85568i 0.645058 0.0741678i
\(627\) 24.5815i 0.981689i
\(628\) 4.99366 + 21.4285i 0.199269 + 0.855092i
\(629\) 0.769203 0.0306701
\(630\) 0.906635 + 7.88526i 0.0361212 + 0.314156i
\(631\) 31.3565i 1.24828i −0.781312 0.624141i \(-0.785449\pi\)
0.781312 0.624141i \(-0.214551\pi\)
\(632\) −20.4770 + 7.32254i −0.814532 + 0.291275i
\(633\) −34.6774 −1.37830
\(634\) 18.4043 2.11610i 0.730928 0.0840410i
\(635\) 16.5349 0.656167
\(636\) 54.4814 12.6962i 2.16033 0.503439i
\(637\) −3.39762 + 1.20671i −0.134619 + 0.0478117i
\(638\) 0.511155 + 4.44566i 0.0202368 + 0.176005i
\(639\) 34.6571i 1.37101i
\(640\) 11.9430 12.3297i 0.472088 0.487376i
\(641\) −3.14378 −0.124172 −0.0620859 0.998071i \(-0.519775\pi\)
−0.0620859 + 0.998071i \(0.519775\pi\)
\(642\) 63.0168 7.24558i 2.48708 0.285960i
\(643\) 23.9503 0.944508 0.472254 0.881462i \(-0.343440\pi\)
0.472254 + 0.881462i \(0.343440\pi\)
\(644\) 2.94319 + 12.6297i 0.115978 + 0.497679i
\(645\) −44.3995 −1.74823
\(646\) 1.01893 0.117155i 0.0400892 0.00460940i
\(647\) 34.8065 1.36838 0.684192 0.729302i \(-0.260155\pi\)
0.684192 + 0.729302i \(0.260155\pi\)
\(648\) 17.0818 6.10840i 0.671035 0.239961i
\(649\) 4.55991 0.178992
\(650\) 12.3530 6.05492i 0.484523 0.237494i
\(651\) 14.1488i 0.554534i
\(652\) −18.0812 + 4.21360i −0.708113 + 0.165017i
\(653\) 23.9093i 0.935643i −0.883823 0.467822i \(-0.845039\pi\)
0.883823 0.467822i \(-0.154961\pi\)
\(654\) −4.61561 40.1433i −0.180485 1.56973i
\(655\) 17.1903i 0.671682i
\(656\) 0.391887 + 0.795162i 0.0153006 + 0.0310458i
\(657\) 38.5115i 1.50248i
\(658\) −6.43580 + 0.739978i −0.250894 + 0.0288474i
\(659\) 9.71979i 0.378629i 0.981916 + 0.189315i \(0.0606266\pi\)
−0.981916 + 0.189315i \(0.939373\pi\)
\(660\) −2.05060 8.79945i −0.0798196 0.342518i
\(661\) −3.10662 −0.120834 −0.0604168 0.998173i \(-0.519243\pi\)
−0.0604168 + 0.998173i \(0.519243\pi\)
\(662\) 30.3247 3.48669i 1.17860 0.135514i
\(663\) −0.274373 0.772526i −0.0106558 0.0300024i
\(664\) 13.8347 4.94726i 0.536890 0.191991i
\(665\) 12.5258i 0.485730i
\(666\) 45.5066 5.23228i 1.76335 0.202747i
\(667\) 17.8350i 0.690573i
\(668\) −4.49912 19.3064i −0.174076 0.746987i
\(669\) −39.8616 −1.54114
\(670\) −9.88130 + 1.13614i −0.381748 + 0.0438928i
\(671\) 12.7172i 0.490944i
\(672\) 12.3078 7.93030i 0.474784 0.305918i
\(673\) 29.1531 1.12377 0.561884 0.827216i \(-0.310077\pi\)
0.561884 + 0.827216i \(0.310077\pi\)
\(674\) −4.72459 + 0.543226i −0.181984 + 0.0209243i
\(675\) 4.88208i 0.187912i
\(676\) 15.9268 20.5508i 0.612571 0.790416i
\(677\) 33.3416i 1.28142i −0.767782 0.640711i \(-0.778640\pi\)
0.767782 0.640711i \(-0.221360\pi\)
\(678\) −3.02029 26.2683i −0.115994 1.00883i
\(679\) −10.4826 −0.402284
\(680\) 0.354974 0.126938i 0.0136126 0.00486785i
\(681\) 47.8418i 1.83330i
\(682\) −1.01586 8.83525i −0.0388995 0.338319i
\(683\) 41.2913 1.57997 0.789984 0.613128i \(-0.210089\pi\)
0.789984 + 0.613128i \(0.210089\pi\)
\(684\) 59.4837 13.8620i 2.27442 0.530025i
\(685\) 7.96916i 0.304486i
\(686\) −0.161540 1.40496i −0.00616762 0.0536415i
\(687\) 25.3461i 0.967014i
\(688\) 19.9924 + 40.5657i 0.762203 + 1.54655i
\(689\) 13.0406 + 36.7171i 0.496807 + 1.39881i
\(690\) 4.11327 + 35.7743i 0.156590 + 1.36190i
\(691\) −6.17715 −0.234990 −0.117495 0.993073i \(-0.537486\pi\)
−0.117495 + 0.993073i \(0.537486\pi\)
\(692\) −10.0192 42.9938i −0.380872 1.63438i
\(693\) 4.25545i 0.161651i
\(694\) 1.68366 + 14.6433i 0.0639109 + 0.555851i
\(695\) 10.1142i 0.383654i
\(696\) −18.9605 + 6.78024i −0.718697 + 0.257004i
\(697\) 0.0194689i 0.000737436i
\(698\) −8.26871 + 0.950724i −0.312975 + 0.0359854i
\(699\) 35.9486i 1.35970i
\(700\) 1.22465 + 5.25517i 0.0462876 + 0.198627i
\(701\) 37.6124i 1.42060i 0.703898 + 0.710301i \(0.251441\pi\)
−0.703898 + 0.710301i \(0.748559\pi\)
\(702\) −4.06100 8.28506i −0.153272 0.312700i
\(703\) −72.2878 −2.72638
\(704\) −7.11628 + 5.83579i −0.268205 + 0.219945i
\(705\) −17.9888 −0.677497
\(706\) −2.95491 25.6997i −0.111209 0.967220i
\(707\) 3.46200 0.130202
\(708\) 4.65685 + 19.9832i 0.175015 + 0.751016i
\(709\) 16.2893 0.611758 0.305879 0.952070i \(-0.401050\pi\)
0.305879 + 0.952070i \(0.401050\pi\)
\(710\) −2.29629 19.9715i −0.0861781 0.749515i
\(711\) −28.4414 −1.06664
\(712\) −1.03382 2.89101i −0.0387441 0.108345i
\(713\) 35.4450i 1.32743i
\(714\) 0.319448 0.0367297i 0.0119551 0.00137457i
\(715\) 5.93028 2.10622i 0.221780 0.0787682i
\(716\) −9.18036 39.3943i −0.343086 1.47223i
\(717\) 9.17113 0.342502
\(718\) 1.68538 + 14.6582i 0.0628978 + 0.547040i
\(719\) −12.6463 −0.471627 −0.235813 0.971798i \(-0.575775\pi\)
−0.235813 + 0.971798i \(0.575775\pi\)
\(720\) 20.1371 9.92435i 0.750464 0.369859i
\(721\) 5.66902i 0.211126i
\(722\) −69.0622 + 7.94067i −2.57023 + 0.295521i
\(723\) 6.55181 0.243665
\(724\) −8.68558 37.2711i −0.322797 1.38517i
\(725\) 7.42109i 0.275612i
\(726\) −4.04587 35.1880i −0.150156 1.30595i
\(727\) −31.4098 −1.16492 −0.582462 0.812858i \(-0.697911\pi\)
−0.582462 + 0.812858i \(0.697911\pi\)
\(728\) 6.44962 + 7.89952i 0.239039 + 0.292776i
\(729\) 37.7762 1.39912
\(730\) 2.55167 + 22.1926i 0.0944415 + 0.821384i
\(731\) 0.993217i 0.0367355i
\(732\) −55.7317 + 12.9876i −2.05990 + 0.480035i
\(733\) 7.05081 0.260428 0.130214 0.991486i \(-0.458434\pi\)
0.130214 + 0.991486i \(0.458434\pi\)
\(734\) −14.8926 + 1.71232i −0.549694 + 0.0632030i
\(735\) 3.92702i 0.144850i
\(736\) 30.8331 19.8667i 1.13652 0.732296i
\(737\) 5.33266 0.196431
\(738\) 0.132431 + 1.15179i 0.00487487 + 0.0423981i
\(739\) −23.2829 −0.856475 −0.428237 0.903666i \(-0.640865\pi\)
−0.428237 + 0.903666i \(0.640865\pi\)
\(740\) −25.8769 + 6.03030i −0.951254 + 0.221678i
\(741\) 25.7849 + 72.6000i 0.947233 + 2.66703i
\(742\) −15.1829 + 1.74571i −0.557384 + 0.0640871i
\(743\) 41.5984i 1.52610i −0.646341 0.763049i \(-0.723702\pi\)
0.646341 0.763049i \(-0.276298\pi\)
\(744\) 37.6819 13.4750i 1.38149 0.494017i
\(745\) 27.2603 0.998739
\(746\) −3.54229 30.8083i −0.129692 1.12797i
\(747\) 19.2156 0.703063
\(748\) −0.196844 + 0.0458720i −0.00719732 + 0.00167725i
\(749\) −17.3294 −0.633204
\(750\) 4.88337 + 42.4720i 0.178316 + 1.55086i
\(751\) 10.7904 0.393748 0.196874 0.980429i \(-0.436921\pi\)
0.196874 + 0.980429i \(0.436921\pi\)
\(752\) 8.10007 + 16.4355i 0.295379 + 0.599341i
\(753\) −73.5650 −2.68086
\(754\) −6.17298 12.5938i −0.224807 0.458640i
\(755\) 1.19141i 0.0433598i
\(756\) 3.52461 0.821368i 0.128189 0.0298729i
\(757\) 6.37976i 0.231876i 0.993256 + 0.115938i \(0.0369874\pi\)
−0.993256 + 0.115938i \(0.963013\pi\)
\(758\) 15.3242 1.76196i 0.556601 0.0639972i
\(759\) 19.3064i 0.700777i
\(760\) −33.3595 + 11.9293i −1.21008 + 0.432721i
\(761\) 21.0373i 0.762603i −0.924451 0.381301i \(-0.875476\pi\)
0.924451 0.381301i \(-0.124524\pi\)
\(762\) −4.55655 39.6296i −0.165067 1.43563i
\(763\) 11.0393i 0.399649i
\(764\) −2.34355 + 0.546135i −0.0847866 + 0.0197585i
\(765\) 0.493039 0.0178259
\(766\) −1.88116 16.3609i −0.0679690 0.591145i
\(767\) −13.4675 + 4.78316i −0.486282 + 0.172710i
\(768\) −32.8422 25.2263i −1.18509 0.910277i
\(769\) 7.90032i 0.284893i −0.989803 0.142446i \(-0.954503\pi\)
0.989803 0.142446i \(-0.0454969\pi\)
\(770\) 0.281955 + 2.45224i 0.0101609 + 0.0883726i
\(771\) 4.27103i 0.153817i
\(772\) −7.53967 32.3538i −0.271359 1.16444i
\(773\) −26.2770 −0.945119 −0.472560 0.881299i \(-0.656670\pi\)
−0.472560 + 0.881299i \(0.656670\pi\)
\(774\) 6.75607 + 58.7595i 0.242842 + 2.11206i
\(775\) 14.7486i 0.529785i
\(776\) 9.98337 + 27.9179i 0.358382 + 1.00219i
\(777\) −22.6632 −0.813038
\(778\) 2.12565 + 18.4874i 0.0762083 + 0.662805i
\(779\) 1.82963i 0.0655535i
\(780\) 15.2866 + 23.8377i 0.547348 + 0.853526i
\(781\) 10.7780i 0.385668i
\(782\) 0.800271 0.0920140i 0.0286176 0.00329041i
\(783\) −4.97728 −0.177873
\(784\) −3.58793 + 1.76827i −0.128140 + 0.0631526i
\(785\) 16.6917i 0.595751i
\(786\) −41.2005 + 4.73718i −1.46957 + 0.168969i
\(787\) −11.3359 −0.404080 −0.202040 0.979377i \(-0.564757\pi\)
−0.202040 + 0.979377i \(0.564757\pi\)
\(788\) 23.9845 5.58930i 0.854413 0.199111i
\(789\) 35.4408i 1.26173i
\(790\) 16.3896 1.88445i 0.583117 0.0670459i
\(791\) 7.22371i 0.256846i
\(792\) −11.3334 + 4.05280i −0.402714 + 0.144010i
\(793\) −13.3399 37.5597i −0.473712 1.33378i
\(794\) −2.82693 + 0.325037i −0.100324 + 0.0115351i
\(795\) −42.4381 −1.50512
\(796\) −7.00879 + 1.63331i −0.248420 + 0.0578912i
\(797\) 33.0929i 1.17221i −0.810235 0.586105i \(-0.800661\pi\)
0.810235 0.586105i \(-0.199339\pi\)
\(798\) −30.0210 + 3.45177i −1.06273 + 0.122191i
\(799\) 0.402409i 0.0142362i
\(800\) 12.8296 8.26649i 0.453594 0.292264i
\(801\) 4.01546i 0.141879i
\(802\) −0.537493 4.67472i −0.0189795 0.165070i
\(803\) 11.9767i 0.422648i
\(804\) 5.44602 + 23.3697i 0.192066 + 0.824185i
\(805\) 9.83782i 0.346738i
\(806\) 12.2681 + 25.0288i 0.432126 + 0.881603i
\(807\) −31.0794 −1.09405
\(808\) −3.29713 9.22021i −0.115993 0.324366i
\(809\) −36.5501 −1.28503 −0.642516 0.766272i \(-0.722109\pi\)
−0.642516 + 0.766272i \(0.722109\pi\)
\(810\) −13.6721 + 1.57200i −0.480388 + 0.0552343i
\(811\) −2.27406 −0.0798529 −0.0399265 0.999203i \(-0.512712\pi\)
−0.0399265 + 0.999203i \(0.512712\pi\)
\(812\) 5.35764 1.24853i 0.188016 0.0438149i
\(813\) −7.82599 −0.274469
\(814\) 14.1521 1.62719i 0.496032 0.0570330i
\(815\) 14.0842 0.493350
\(816\) −0.402057 0.815795i −0.0140748 0.0285585i
\(817\) 93.3400i 3.26555i
\(818\) 5.75018 + 50.0109i 0.201050 + 1.74859i
\(819\) 4.46379 + 12.5682i 0.155977 + 0.439170i
\(820\) −0.152629 0.654956i −0.00533005 0.0228720i
\(821\) −28.9611 −1.01075 −0.505375 0.862900i \(-0.668646\pi\)
−0.505375 + 0.862900i \(0.668646\pi\)
\(822\) 19.0999 2.19608i 0.666186 0.0765970i
\(823\) 18.0668 0.629768 0.314884 0.949130i \(-0.398034\pi\)
0.314884 + 0.949130i \(0.398034\pi\)
\(824\) −15.0981 + 5.39905i −0.525968 + 0.188085i
\(825\) 8.03333i 0.279685i
\(826\) −0.640310 5.56895i −0.0222792 0.193769i
\(827\) 50.9766 1.77263 0.886315 0.463083i \(-0.153257\pi\)
0.886315 + 0.463083i \(0.153257\pi\)
\(828\) 46.7187 10.8872i 1.62359 0.378357i
\(829\) 42.8967i 1.48987i −0.667140 0.744933i \(-0.732482\pi\)
0.667140 0.744933i \(-0.267518\pi\)
\(830\) −11.0732 + 1.27318i −0.384355 + 0.0441926i
\(831\) 57.2008 1.98427
\(832\) 14.8960 24.7004i 0.516427 0.856331i
\(833\) −0.0878473 −0.00304373
\(834\) −24.2410 + 2.78720i −0.839399 + 0.0965128i
\(835\) 15.0386i 0.520434i
\(836\) 18.4989 4.31094i 0.639797 0.149097i
\(837\) 9.89178 0.341910
\(838\) −0.177564 1.54432i −0.00613385 0.0533478i
\(839\) 46.5281i 1.60633i 0.595758 + 0.803164i \(0.296852\pi\)
−0.595758 + 0.803164i \(0.703148\pi\)
\(840\) −10.4587 + 3.74000i −0.360859 + 0.129042i
\(841\) 21.4342 0.739111
\(842\) −13.7075 + 1.57607i −0.472391 + 0.0543148i
\(843\) 66.6722 2.29631
\(844\) −6.08150 26.0966i −0.209334 0.898283i
\(845\) −15.3054 + 12.4412i −0.526522 + 0.427991i
\(846\) 2.73727 + 23.8068i 0.0941094 + 0.818496i
\(847\) 9.67660i 0.332492i
\(848\) 19.1092 + 38.7736i 0.656212 + 1.33149i
\(849\) 3.41436 0.117181
\(850\) 0.332991 0.0382868i 0.0114215 0.00131323i
\(851\) −56.7751 −1.94622
\(852\) −47.2333 + 11.0072i −1.61819 + 0.377099i
\(853\) −34.8932 −1.19472 −0.597360 0.801973i \(-0.703784\pi\)
−0.597360 + 0.801973i \(0.703784\pi\)
\(854\) 15.5314 1.78577i 0.531473 0.0611079i
\(855\) −46.3346 −1.58461
\(856\) 16.5042 + 46.1529i 0.564101 + 1.57747i
\(857\) 3.09683 0.105786 0.0528928 0.998600i \(-0.483156\pi\)
0.0528928 + 0.998600i \(0.483156\pi\)
\(858\) −6.68226 13.6328i −0.228129 0.465418i
\(859\) 32.0784i 1.09450i 0.836969 + 0.547251i \(0.184326\pi\)
−0.836969 + 0.547251i \(0.815674\pi\)
\(860\) −7.78649 33.4130i −0.265517 1.13937i
\(861\) 0.573616i 0.0195488i
\(862\) −1.04172 9.06009i −0.0354810 0.308588i
\(863\) 4.04153i 0.137575i 0.997631 + 0.0687876i \(0.0219131\pi\)
−0.997631 + 0.0687876i \(0.978087\pi\)
\(864\) −5.54428 8.60472i −0.188620 0.292739i
\(865\) 33.4898i 1.13869i
\(866\) 36.2309 4.16577i 1.23117 0.141559i
\(867\) 43.9806i 1.49366i
\(868\) −10.6477 + 2.48132i −0.361407 + 0.0842215i
\(869\) −8.84502 −0.300047
\(870\) 15.1758 1.74490i 0.514509 0.0591575i
\(871\) −15.7497 + 5.59373i −0.533658 + 0.189536i
\(872\) 29.4005 10.5136i 0.995627 0.356034i
\(873\) 38.7764i 1.31238i
\(874\) −75.2074 + 8.64724i −2.54393 + 0.292497i
\(875\) 11.6797i 0.394845i
\(876\) 52.4864 12.2313i 1.77335 0.413257i
\(877\) −6.27681 −0.211953 −0.105976 0.994369i \(-0.533797\pi\)
−0.105976 + 0.994369i \(0.533797\pi\)
\(878\) 29.3390 3.37336i 0.990145 0.113845i
\(879\) 9.51994i 0.321100i
\(880\) 6.26243 3.08638i 0.211107 0.104042i
\(881\) 5.41652 0.182487 0.0912437 0.995829i \(-0.470916\pi\)
0.0912437 + 0.995829i \(0.470916\pi\)
\(882\) −5.19711 + 0.597556i −0.174996 + 0.0201208i
\(883\) 16.4099i 0.552236i 0.961124 + 0.276118i \(0.0890480\pi\)
−0.961124 + 0.276118i \(0.910952\pi\)
\(884\) 0.533249 0.341961i 0.0179351 0.0115014i
\(885\) 15.5659i 0.523241i
\(886\) 0.319672 + 2.78027i 0.0107396 + 0.0934052i
\(887\) 39.5735 1.32875 0.664374 0.747400i \(-0.268698\pi\)
0.664374 + 0.747400i \(0.268698\pi\)
\(888\) 21.5839 + 60.3581i 0.724310 + 2.02549i
\(889\) 10.8980i 0.365508i
\(890\) 0.266054 + 2.31394i 0.00891814 + 0.0775635i
\(891\) 7.37844 0.247187
\(892\) −6.99067 29.9980i −0.234065 1.00441i
\(893\) 37.8174i 1.26551i
\(894\) −7.51217 65.3354i −0.251245 2.18514i
\(895\) 30.6860i 1.02572i
\(896\) 8.12644 + 7.87153i 0.271485 + 0.262969i
\(897\) 20.2516 + 57.0203i 0.676180 + 1.90385i
\(898\) 3.77039 + 32.7921i 0.125820 + 1.09429i
\(899\) 15.0362 0.501484
\(900\) 19.4395 4.53015i 0.647985 0.151005i
\(901\) 0.949340i 0.0316271i
\(902\) 0.0411849 + 0.358196i 0.00137131 + 0.0119266i
\(903\) 29.2634i 0.973824i
\(904\) 19.2387 6.87970i 0.639868 0.228816i
\(905\) 29.0322i 0.965062i
\(906\) 2.85548 0.328319i 0.0948671 0.0109077i
\(907\) 54.8552i 1.82144i 0.413026 + 0.910719i \(0.364472\pi\)
−0.413026 + 0.910719i \(0.635528\pi\)
\(908\) 36.0035 8.39018i 1.19482 0.278438i
\(909\) 12.8064i 0.424760i
\(910\) −3.40503 6.94680i −0.112876 0.230284i
\(911\) −19.6423 −0.650778 −0.325389 0.945580i \(-0.605495\pi\)
−0.325389 + 0.945580i \(0.605495\pi\)
\(912\) 37.7843 + 76.6664i 1.25116 + 2.53868i
\(913\) 5.97588 0.197773
\(914\) −2.07060 18.0086i −0.0684893 0.595671i
\(915\) 43.4120 1.43515
\(916\) 19.0743 4.44503i 0.630232 0.146868i
\(917\) 11.3300 0.374150
\(918\) −0.0256787 0.223335i −0.000847524 0.00737115i
\(919\) 50.8099 1.67606 0.838032 0.545621i \(-0.183706\pi\)
0.838032 + 0.545621i \(0.183706\pi\)
\(920\) −26.2007 + 9.36932i −0.863812 + 0.308897i
\(921\) 70.4253i 2.32059i
\(922\) −42.5385 + 4.89102i −1.40093 + 0.161077i
\(923\) −11.3057 31.8323i −0.372132 1.04777i
\(924\) 5.79965 1.35154i 0.190795 0.0444623i
\(925\) −23.6240 −0.776751
\(926\) −0.135565 1.17905i −0.00445496 0.0387460i
\(927\) −20.9704 −0.688760
\(928\) −8.42767 13.0797i −0.276652 0.429363i
\(929\) 22.2352i 0.729515i −0.931103 0.364757i \(-0.881152\pi\)
0.931103 0.364757i \(-0.118848\pi\)
\(930\) −30.1603 + 3.46778i −0.988995 + 0.113713i
\(931\) 8.25567 0.270569
\(932\) −27.0533 + 6.30443i −0.886159 + 0.206509i
\(933\) 38.5222i 1.26116i
\(934\) 5.09380 + 44.3022i 0.166674 + 1.44961i
\(935\) 0.153330 0.00501444
\(936\) 29.2213 23.8580i 0.955129 0.779822i
\(937\) 32.6708 1.06731 0.533653 0.845703i \(-0.320819\pi\)
0.533653 + 0.845703i \(0.320819\pi\)
\(938\) −0.748819 6.51269i −0.0244498 0.212647i
\(939\) 29.7325i 0.970285i
\(940\) −3.15476 13.5375i −0.102897 0.441545i
\(941\) 29.1551 0.950428 0.475214 0.879870i \(-0.342371\pi\)
0.475214 + 0.879870i \(0.342371\pi\)
\(942\) −40.0054 + 4.59976i −1.30345 + 0.149868i
\(943\) 1.43700i 0.0467952i
\(944\) −14.2218 + 7.00906i −0.462879 + 0.228126i
\(945\) −2.74548 −0.0893105
\(946\) 2.10107 + 18.2736i 0.0683118 + 0.594127i
\(947\) −46.5705 −1.51334 −0.756668 0.653799i \(-0.773174\pi\)
−0.756668 + 0.653799i \(0.773174\pi\)
\(948\) −9.03305 38.7622i −0.293380 1.25894i
\(949\) 12.5631 + 35.3725i 0.407814 + 1.14824i
\(950\) −31.2936 + 3.59810i −1.01530 + 0.116738i
\(951\) 33.9051i 1.09945i
\(952\) 0.0836638 + 0.233961i 0.00271156 + 0.00758271i
\(953\) 2.59239 0.0839758 0.0419879 0.999118i \(-0.486631\pi\)
0.0419879 + 0.999118i \(0.486631\pi\)
\(954\) 6.45761 + 56.1636i 0.209073 + 1.81837i
\(955\) 1.82550 0.0590716
\(956\) 1.60837 + 6.90177i 0.0520185 + 0.223219i
\(957\) −8.18997 −0.264744
\(958\) −6.03519 52.4897i −0.194988 1.69586i
\(959\) −5.25241 −0.169609
\(960\) 19.9212 + 24.2923i 0.642955 + 0.784032i
\(961\) 1.11733 0.0360429
\(962\) −40.0907 + 19.6508i −1.29258 + 0.633567i
\(963\) 64.1038i 2.06571i
\(964\) 1.14901 + 4.93059i 0.0370072 + 0.158804i
\(965\) 25.2019i 0.811277i
\(966\) −23.5786 + 2.71103i −0.758628 + 0.0872259i
\(967\) 39.6322i 1.27449i 0.770663 + 0.637243i \(0.219925\pi\)
−0.770663 + 0.637243i \(0.780075\pi\)
\(968\) 25.7713 9.21577i 0.828322 0.296206i
\(969\) 1.87711i 0.0603015i
\(970\) −2.56922 22.3452i −0.0824927 0.717462i
\(971\) 28.8005i 0.924252i 0.886814 + 0.462126i \(0.152913\pi\)
−0.886814 + 0.462126i \(0.847087\pi\)
\(972\) 9.99940 + 42.9089i 0.320731 + 1.37630i
\(973\) 6.66621 0.213709
\(974\) −6.24004 54.2713i −0.199944 1.73897i
\(975\) 8.42663 + 23.7260i 0.269868 + 0.759840i
\(976\) −19.5477 39.6634i −0.625707 1.26960i
\(977\) 46.4373i 1.48566i 0.669480 + 0.742830i \(0.266517\pi\)
−0.669480 + 0.742830i \(0.733483\pi\)
\(978\) −3.88123 33.7561i −0.124108 1.07940i
\(979\) 1.24877i 0.0399108i
\(980\) 2.95529 0.688694i 0.0944033 0.0219995i
\(981\) 40.8357 1.30378
\(982\) 5.56341 + 48.3866i 0.177536 + 1.54408i
\(983\) 46.2252i 1.47436i 0.675699 + 0.737178i \(0.263842\pi\)
−0.675699 + 0.737178i \(0.736158\pi\)
\(984\) −1.52769 + 0.546299i −0.0487010 + 0.0174154i
\(985\) −18.6826 −0.595278
\(986\) −0.0390333 0.339484i −0.00124307 0.0108114i
\(987\) 11.8563i 0.377389i
\(988\) −50.1134 + 32.1366i −1.59432 + 1.02240i
\(989\) 73.3096i 2.33111i
\(990\) 9.07114 1.04299i 0.288300 0.0331483i
\(991\) 10.6490 0.338277 0.169139 0.985592i \(-0.445901\pi\)
0.169139 + 0.985592i \(0.445901\pi\)
\(992\) 16.7490 + 25.9945i 0.531783 + 0.825327i
\(993\) 55.8653i 1.77283i
\(994\) 13.1630 1.51347i 0.417506 0.0480042i
\(995\) 5.45946 0.173077
\(996\) 6.10291 + 26.1885i 0.193378 + 0.829815i
\(997\) 50.3193i 1.59363i −0.604225 0.796814i \(-0.706517\pi\)
0.604225 0.796814i \(-0.293483\pi\)
\(998\) 6.50301 0.747706i 0.205849 0.0236682i
\(999\) 15.8445i 0.501296i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.i.a.701.2 yes 84
4.3 odd 2 2912.2.i.a.337.66 84
8.3 odd 2 2912.2.i.a.337.19 84
8.5 even 2 inner 728.2.i.a.701.84 yes 84
13.12 even 2 inner 728.2.i.a.701.83 yes 84
52.51 odd 2 2912.2.i.a.337.20 84
104.51 odd 2 2912.2.i.a.337.65 84
104.77 even 2 inner 728.2.i.a.701.1 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.i.a.701.1 84 104.77 even 2 inner
728.2.i.a.701.2 yes 84 1.1 even 1 trivial
728.2.i.a.701.83 yes 84 13.12 even 2 inner
728.2.i.a.701.84 yes 84 8.5 even 2 inner
2912.2.i.a.337.19 84 8.3 odd 2
2912.2.i.a.337.20 84 52.51 odd 2
2912.2.i.a.337.65 84 104.51 odd 2
2912.2.i.a.337.66 84 4.3 odd 2