L(s) = 1 | − 4i·2-s + (9.81 − 12.1i)3-s − 16·4-s − 51.7·5-s + (−48.4 − 39.2i)6-s + 64i·8-s + (−50.2 − 237. i)9-s + 207. i·10-s + 453. i·11-s + (−157. + 193. i)12-s − 645. i·13-s + (−508. + 627. i)15-s + 256·16-s − 834.·17-s + (−951. + 200. i)18-s + 2.06e3i·19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + (0.629 − 0.776i)3-s − 0.5·4-s − 0.926·5-s + (−0.549 − 0.445i)6-s + 0.353i·8-s + (−0.206 − 0.978i)9-s + 0.655i·10-s + 1.12i·11-s + (−0.314 + 0.388i)12-s − 1.05i·13-s + (−0.583 + 0.719i)15-s + 0.250·16-s − 0.700·17-s + (−0.691 + 0.146i)18-s + 1.31i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0324i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.999 - 0.0324i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.201948940\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.201948940\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + 4iT \) |
| 3 | \( 1 + (-9.81 + 12.1i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + 51.7T + 3.12e3T^{2} \) |
| 11 | \( 1 - 453. iT - 1.61e5T^{2} \) |
| 13 | \( 1 + 645. iT - 3.71e5T^{2} \) |
| 17 | \( 1 + 834.T + 1.41e6T^{2} \) |
| 19 | \( 1 - 2.06e3iT - 2.47e6T^{2} \) |
| 23 | \( 1 - 754. iT - 6.43e6T^{2} \) |
| 29 | \( 1 - 1.45e3iT - 2.05e7T^{2} \) |
| 31 | \( 1 - 3.98e3iT - 2.86e7T^{2} \) |
| 37 | \( 1 - 1.54e4T + 6.93e7T^{2} \) |
| 41 | \( 1 - 1.94e4T + 1.15e8T^{2} \) |
| 43 | \( 1 + 6.77e3T + 1.47e8T^{2} \) |
| 47 | \( 1 - 5.36e3T + 2.29e8T^{2} \) |
| 53 | \( 1 - 3.48e4iT - 4.18e8T^{2} \) |
| 59 | \( 1 - 4.90e3T + 7.14e8T^{2} \) |
| 61 | \( 1 + 3.35e4iT - 8.44e8T^{2} \) |
| 67 | \( 1 + 2.75e4T + 1.35e9T^{2} \) |
| 71 | \( 1 - 4.48e4iT - 1.80e9T^{2} \) |
| 73 | \( 1 + 8.18e4iT - 2.07e9T^{2} \) |
| 79 | \( 1 + 3.38e4T + 3.07e9T^{2} \) |
| 83 | \( 1 + 9.45e3T + 3.93e9T^{2} \) |
| 89 | \( 1 - 8.84e4T + 5.58e9T^{2} \) |
| 97 | \( 1 - 1.01e4iT - 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.07260983831163341659293095797, −10.00133690282660881346729121523, −9.030812774868939624924313573750, −7.907297846466102826507512179368, −7.49941914689337197729481507814, −6.03835561018479667686639057289, −4.44849930534302336033929774445, −3.45547828354290696308910902833, −2.31001110231419502015271748280, −1.04138169853802229399617551342,
0.35148171730217144320776804398, 2.63146794751460230312128931169, 3.97492914365580636663025835325, 4.56455530147846279227205031426, 5.98067185922619163417639304797, 7.20181048834147895204253597277, 8.164903651011575075574174809543, 8.878462643751553107915151536733, 9.649268718204002238974107128207, 11.10639919173603267654414838744