L(s) = 1 | + (2 − 3.46i)2-s + (−4.5 − 7.79i)3-s + (−7.99 − 13.8i)4-s + (−13 + 22.5i)5-s − 36·6-s − 63.9·8-s + (−40.5 + 70.1i)9-s + (51.9 + 90.0i)10-s + (179 + 310. i)11-s + (−72 + 124. i)12-s + 332·13-s + 234·15-s + (−128 + 221. i)16-s + (−63 − 109. i)17-s + (162 + 280. i)18-s + (1.10e3 − 1.90e3i)19-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.288 − 0.499i)3-s + (−0.249 − 0.433i)4-s + (−0.232 + 0.402i)5-s − 0.408·6-s − 0.353·8-s + (−0.166 + 0.288i)9-s + (0.164 + 0.284i)10-s + (0.446 + 0.772i)11-s + (−0.144 + 0.249i)12-s + 0.544·13-s + 0.268·15-s + (−0.125 + 0.216i)16-s + (−0.0528 − 0.0915i)17-s + (0.117 + 0.204i)18-s + (0.699 − 1.21i)19-s + ⋯ |
Λ(s)=(=(294s/2ΓC(s)L(s)(−0.605+0.795i)Λ(6−s)
Λ(s)=(=(294s/2ΓC(s+5/2)L(s)(−0.605+0.795i)Λ(1−s)
Degree: |
2 |
Conductor: |
294
= 2⋅3⋅72
|
Sign: |
−0.605+0.795i
|
Analytic conductor: |
47.1528 |
Root analytic conductor: |
6.86679 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ294(79,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 294, ( :5/2), −0.605+0.795i)
|
Particular Values
L(3) |
≈ |
1.787627482 |
L(21) |
≈ |
1.787627482 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−2+3.46i)T |
| 3 | 1+(4.5+7.79i)T |
| 7 | 1 |
good | 5 | 1+(13−22.5i)T+(−1.56e3−2.70e3i)T2 |
| 11 | 1+(−179−310.i)T+(−8.05e4+1.39e5i)T2 |
| 13 | 1−332T+3.71e5T2 |
| 17 | 1+(63+109.i)T+(−7.09e5+1.22e6i)T2 |
| 19 | 1+(−1.10e3+1.90e3i)T+(−1.23e6−2.14e6i)T2 |
| 23 | 1+(−1.07e3+1.85e3i)T+(−3.21e6−5.57e6i)T2 |
| 29 | 1+3.61e3T+2.05e7T2 |
| 31 | 1+(2.83e3+4.90e3i)T+(−1.43e7+2.47e7i)T2 |
| 37 | 1+(−1.46e3+2.53e3i)T+(−3.46e7−6.00e7i)T2 |
| 41 | 1+2.14e3T+1.15e8T2 |
| 43 | 1−6.38e3T+1.47e8T2 |
| 47 | 1+(−3.26e3+5.64e3i)T+(−1.14e8−1.98e8i)T2 |
| 53 | 1+(−5.35e3−9.26e3i)T+(−2.09e8+3.62e8i)T2 |
| 59 | 1+(2.12e4+3.68e4i)T+(−3.57e8+6.19e8i)T2 |
| 61 | 1+(−2.24e4+3.88e4i)T+(−4.22e8−7.31e8i)T2 |
| 67 | 1+(−724−1.25e3i)T+(−6.75e8+1.16e9i)T2 |
| 71 | 1+4.40e3T+1.80e9T2 |
| 73 | 1+(1.02e4+1.77e4i)T+(−1.03e9+1.79e9i)T2 |
| 79 | 1+(3.26e4−5.64e4i)T+(−1.53e9−2.66e9i)T2 |
| 83 | 1+1.02e5T+3.93e9T2 |
| 89 | 1+(−6.40e4+1.10e5i)T+(−2.79e9−4.83e9i)T2 |
| 97 | 1+1.13e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.07202333676772112186249226035, −9.755887301265747622253732597461, −8.876373412615947022135237060130, −7.45635144413179319472716495672, −6.70051514310750823572912934237, −5.48895542123182879953165106079, −4.35134237655165477715464154661, −3.09325125651313081615033975427, −1.84997048278463357742320972913, −0.52056753042671317138605899291,
1.11453201143799745843702540905, 3.29760790352124500460790975027, 4.15566521556555781265172774507, 5.38470965855136888565916554035, 6.09416650594995637392729628224, 7.34303346548485603329835454200, 8.448493085336720574143203750650, 9.159681652391922493187496122245, 10.34240435436802965053749039581, 11.39327280970262603858283146821