L(s) = 1 | + (2 − 3.46i)2-s + (−4.5 − 7.79i)3-s + (−7.99 − 13.8i)4-s + (−13 + 22.5i)5-s − 36·6-s − 63.9·8-s + (−40.5 + 70.1i)9-s + (51.9 + 90.0i)10-s + (179 + 310. i)11-s + (−72 + 124. i)12-s + 332·13-s + 234·15-s + (−128 + 221. i)16-s + (−63 − 109. i)17-s + (162 + 280. i)18-s + (1.10e3 − 1.90e3i)19-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.288 − 0.499i)3-s + (−0.249 − 0.433i)4-s + (−0.232 + 0.402i)5-s − 0.408·6-s − 0.353·8-s + (−0.166 + 0.288i)9-s + (0.164 + 0.284i)10-s + (0.446 + 0.772i)11-s + (−0.144 + 0.249i)12-s + 0.544·13-s + 0.268·15-s + (−0.125 + 0.216i)16-s + (−0.0528 − 0.0915i)17-s + (0.117 + 0.204i)18-s + (0.699 − 1.21i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.605 + 0.795i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.605 + 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.787627482\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.787627482\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-2 + 3.46i)T \) |
| 3 | \( 1 + (4.5 + 7.79i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (13 - 22.5i)T + (-1.56e3 - 2.70e3i)T^{2} \) |
| 11 | \( 1 + (-179 - 310. i)T + (-8.05e4 + 1.39e5i)T^{2} \) |
| 13 | \( 1 - 332T + 3.71e5T^{2} \) |
| 17 | \( 1 + (63 + 109. i)T + (-7.09e5 + 1.22e6i)T^{2} \) |
| 19 | \( 1 + (-1.10e3 + 1.90e3i)T + (-1.23e6 - 2.14e6i)T^{2} \) |
| 23 | \( 1 + (-1.07e3 + 1.85e3i)T + (-3.21e6 - 5.57e6i)T^{2} \) |
| 29 | \( 1 + 3.61e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (2.83e3 + 4.90e3i)T + (-1.43e7 + 2.47e7i)T^{2} \) |
| 37 | \( 1 + (-1.46e3 + 2.53e3i)T + (-3.46e7 - 6.00e7i)T^{2} \) |
| 41 | \( 1 + 2.14e3T + 1.15e8T^{2} \) |
| 43 | \( 1 - 6.38e3T + 1.47e8T^{2} \) |
| 47 | \( 1 + (-3.26e3 + 5.64e3i)T + (-1.14e8 - 1.98e8i)T^{2} \) |
| 53 | \( 1 + (-5.35e3 - 9.26e3i)T + (-2.09e8 + 3.62e8i)T^{2} \) |
| 59 | \( 1 + (2.12e4 + 3.68e4i)T + (-3.57e8 + 6.19e8i)T^{2} \) |
| 61 | \( 1 + (-2.24e4 + 3.88e4i)T + (-4.22e8 - 7.31e8i)T^{2} \) |
| 67 | \( 1 + (-724 - 1.25e3i)T + (-6.75e8 + 1.16e9i)T^{2} \) |
| 71 | \( 1 + 4.40e3T + 1.80e9T^{2} \) |
| 73 | \( 1 + (1.02e4 + 1.77e4i)T + (-1.03e9 + 1.79e9i)T^{2} \) |
| 79 | \( 1 + (3.26e4 - 5.64e4i)T + (-1.53e9 - 2.66e9i)T^{2} \) |
| 83 | \( 1 + 1.02e5T + 3.93e9T^{2} \) |
| 89 | \( 1 + (-6.40e4 + 1.10e5i)T + (-2.79e9 - 4.83e9i)T^{2} \) |
| 97 | \( 1 + 1.13e5T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.07202333676772112186249226035, −9.755887301265747622253732597461, −8.876373412615947022135237060130, −7.45635144413179319472716495672, −6.70051514310750823572912934237, −5.48895542123182879953165106079, −4.35134237655165477715464154661, −3.09325125651313081615033975427, −1.84997048278463357742320972913, −0.52056753042671317138605899291,
1.11453201143799745843702540905, 3.29760790352124500460790975027, 4.15566521556555781265172774507, 5.38470965855136888565916554035, 6.09416650594995637392729628224, 7.34303346548485603329835454200, 8.448493085336720574143203750650, 9.159681652391922493187496122245, 10.34240435436802965053749039581, 11.39327280970262603858283146821