Properties

Label 294.6.e.j
Level $294$
Weight $6$
Character orbit 294.e
Analytic conductor $47.153$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,6,Mod(67,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.67");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 294.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.1528430250\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 \zeta_{6} q^{2} + (9 \zeta_{6} - 9) q^{3} + (16 \zeta_{6} - 16) q^{4} - 26 \zeta_{6} q^{5} - 36 q^{6} - 64 q^{8} - 81 \zeta_{6} q^{9} + ( - 104 \zeta_{6} + 104) q^{10} + ( - 358 \zeta_{6} + 358) q^{11} + \cdots - 28998 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} - 9 q^{3} - 16 q^{4} - 26 q^{5} - 72 q^{6} - 128 q^{8} - 81 q^{9} + 104 q^{10} + 358 q^{11} - 144 q^{12} + 664 q^{13} + 468 q^{15} - 256 q^{16} - 126 q^{17} + 324 q^{18} + 2200 q^{19} + 832 q^{20}+ \cdots - 57996 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/294\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(199\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
67.1
0.500000 + 0.866025i
0.500000 0.866025i
2.00000 + 3.46410i −4.50000 + 7.79423i −8.00000 + 13.8564i −13.0000 22.5167i −36.0000 0 −64.0000 −40.5000 70.1481i 52.0000 90.0666i
79.1 2.00000 3.46410i −4.50000 7.79423i −8.00000 13.8564i −13.0000 + 22.5167i −36.0000 0 −64.0000 −40.5000 + 70.1481i 52.0000 + 90.0666i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 294.6.e.j 2
7.b odd 2 1 294.6.e.q 2
7.c even 3 1 294.6.a.g yes 1
7.c even 3 1 inner 294.6.e.j 2
7.d odd 6 1 294.6.a.a 1
7.d odd 6 1 294.6.e.q 2
21.g even 6 1 882.6.a.t 1
21.h odd 6 1 882.6.a.p 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
294.6.a.a 1 7.d odd 6 1
294.6.a.g yes 1 7.c even 3 1
294.6.e.j 2 1.a even 1 1 trivial
294.6.e.j 2 7.c even 3 1 inner
294.6.e.q 2 7.b odd 2 1
294.6.e.q 2 7.d odd 6 1
882.6.a.p 1 21.h odd 6 1
882.6.a.t 1 21.g even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(294, [\chi])\):

\( T_{5}^{2} + 26T_{5} + 676 \) Copy content Toggle raw display
\( T_{11}^{2} - 358T_{11} + 128164 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$3$ \( T^{2} + 9T + 81 \) Copy content Toggle raw display
$5$ \( T^{2} + 26T + 676 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 358T + 128164 \) Copy content Toggle raw display
$13$ \( (T - 332)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 126T + 15876 \) Copy content Toggle raw display
$19$ \( T^{2} - 2200 T + 4840000 \) Copy content Toggle raw display
$23$ \( T^{2} - 2142 T + 4588164 \) Copy content Toggle raw display
$29$ \( (T + 3610)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 5668 T + 32126224 \) Copy content Toggle raw display
$37$ \( T^{2} - 2922 T + 8538084 \) Copy content Toggle raw display
$41$ \( (T + 2142)^{2} \) Copy content Toggle raw display
$43$ \( (T - 6388)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 6520 T + 42510400 \) Copy content Toggle raw display
$53$ \( T^{2} - 10702 T + 114532804 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 1808290576 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 2010625600 \) Copy content Toggle raw display
$67$ \( T^{2} - 1448 T + 2096704 \) Copy content Toggle raw display
$71$ \( (T + 4402)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 20500 T + 420250000 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 4255735696 \) Copy content Toggle raw display
$83$ \( (T + 102804)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 16385536036 \) Copy content Toggle raw display
$97$ \( (T + 113324)^{2} \) Copy content Toggle raw display
show more
show less