L(s) = 1 | + 2·5-s + 9-s + 8·11-s + 5·25-s + 24·29-s + 8·31-s + 40·41-s + 2·45-s + 16·55-s − 8·59-s + 4·61-s − 24·79-s + 20·89-s + 8·99-s − 4·101-s − 4·109-s + 38·121-s + 22·125-s + 127-s + 131-s + 137-s + 139-s + 48·145-s + 149-s + 151-s + 16·155-s + 157-s + ⋯ |
L(s) = 1 | + 0.894·5-s + 1/3·9-s + 2.41·11-s + 25-s + 4.45·29-s + 1.43·31-s + 6.24·41-s + 0.298·45-s + 2.15·55-s − 1.04·59-s + 0.512·61-s − 2.70·79-s + 2.11·89-s + 0.804·99-s − 0.398·101-s − 0.383·109-s + 3.45·121-s + 1.96·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 3.98·145-s + 0.0819·149-s + 0.0813·151-s + 1.28·155-s + 0.0798·157-s + ⋯ |
Λ(s)=(=((28⋅34⋅54⋅78)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((28⋅34⋅54⋅78)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
28⋅34⋅54⋅78
|
Sign: |
1
|
Analytic conductor: |
303737. |
Root analytic conductor: |
4.84520 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 28⋅34⋅54⋅78, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
17.14651166 |
L(21) |
≈ |
17.14651166 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C22 | 1−T2+T4 |
| 5 | C22 | 1−2T−T2−2pT3+p2T4 |
| 7 | | 1 |
good | 11 | C22 | (1−4T+5T2−4pT3+p2T4)2 |
| 13 | C2 | (1−pT2)4 |
| 17 | C23 | 1+18T2+35T4+18p2T6+p4T8 |
| 19 | C22 | (1−pT2+p2T4)2 |
| 23 | C23 | 1+30T2+371T4+30p2T6+p4T8 |
| 29 | C2 | (1−6T+pT2)4 |
| 31 | C2 | (1−11T+pT2)2(1+7T+pT2)2 |
| 37 | C23 | 1+10T2−1269T4+10p2T6+p4T8 |
| 41 | C2 | (1−10T+pT2)4 |
| 43 | C22 | (1−70T2+p2T4)2 |
| 47 | C23 | 1+78T2+3875T4+78p2T6+p4T8 |
| 53 | C23 | 1−38T2−1365T4−38p2T6+p4T8 |
| 59 | C22 | (1+4T−43T2+4pT3+p2T4)2 |
| 61 | C22 | (1−2T−57T2−2pT3+p2T4)2 |
| 67 | C23 | 1+118T2+9435T4+118p2T6+p4T8 |
| 71 | C2 | (1+pT2)4 |
| 73 | C23 | 1+82T2+1395T4+82p2T6+p4T8 |
| 79 | C22 | (1+12T+65T2+12pT3+p2T4)2 |
| 83 | C22 | (1−150T2+p2T4)2 |
| 89 | C22 | (1−10T+11T2−10pT3+p2T4)2 |
| 97 | C2 | (1−18T+pT2)2(1+18T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.17691336383326233273012993272, −5.92737364257304510730377100793, −5.82845157108284219333384889279, −5.82680832856455632703707059416, −5.62089721951656408656451595976, −4.99568202989921654313559139755, −4.95794196273389300800434867635, −4.58485734453172520474782885617, −4.54356814214105096915637718030, −4.34758824835669358294309739775, −4.20228014373754662533258764276, −4.04566931337420137652026539519, −3.90947180048060406283874341320, −3.16339255585273611147973998494, −3.05618439753852648063993467595, −3.01522320088461653802407578434, −2.91588936188680976752005186297, −2.51240199560116763114368581130, −2.11794387766076669046191034499, −1.94087666560935250387361907651, −1.77386860575861602152715686459, −1.07331242778245243522132327064, −0.956300214662146171896165375571, −0.845782961258970019901223728095, −0.799101829632764161884040001244,
0.799101829632764161884040001244, 0.845782961258970019901223728095, 0.956300214662146171896165375571, 1.07331242778245243522132327064, 1.77386860575861602152715686459, 1.94087666560935250387361907651, 2.11794387766076669046191034499, 2.51240199560116763114368581130, 2.91588936188680976752005186297, 3.01522320088461653802407578434, 3.05618439753852648063993467595, 3.16339255585273611147973998494, 3.90947180048060406283874341320, 4.04566931337420137652026539519, 4.20228014373754662533258764276, 4.34758824835669358294309739775, 4.54356814214105096915637718030, 4.58485734453172520474782885617, 4.95794196273389300800434867635, 4.99568202989921654313559139755, 5.62089721951656408656451595976, 5.82680832856455632703707059416, 5.82845157108284219333384889279, 5.92737364257304510730377100793, 6.17691336383326233273012993272