Properties

Label 2940.2.bb.e
Level 29402940
Weight 22
Character orbit 2940.bb
Analytic conductor 23.47623.476
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2940,2,Mod(949,2940)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2940, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2940.949");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2940=223572 2940 = 2^{2} \cdot 3 \cdot 5 \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2940.bb (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 23.476018194323.4760181943
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 60)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ12\zeta_{12}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ123+ζ12)q3+(ζ1222ζ12+1)q5+(ζ122+1)q9+4ζ122q11+(ζ1232)q15+(4ζ1234ζ12)q17++4q99+O(q100) q + ( - \zeta_{12}^{3} + \zeta_{12}) q^{3} + ( - \zeta_{12}^{2} - 2 \zeta_{12} + 1) q^{5} + ( - \zeta_{12}^{2} + 1) q^{9} + 4 \zeta_{12}^{2} q^{11} + ( - \zeta_{12}^{3} - 2) q^{15} + (4 \zeta_{12}^{3} - 4 \zeta_{12}) q^{17}+ \cdots + 4 q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q5+2q9+8q118q15+6q25+24q29+8q31+40q412q458q51+16q558q59+4q61+16q698q7524q792q81+32q85++16q99+O(q100) 4 q + 2 q^{5} + 2 q^{9} + 8 q^{11} - 8 q^{15} + 6 q^{25} + 24 q^{29} + 8 q^{31} + 40 q^{41} - 2 q^{45} - 8 q^{51} + 16 q^{55} - 8 q^{59} + 4 q^{61} + 16 q^{69} - 8 q^{75} - 24 q^{79} - 2 q^{81} + 32 q^{85}+ \cdots + 16 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2940Z)×\left(\mathbb{Z}/2940\mathbb{Z}\right)^\times.

nn 10811081 11771177 14711471 19611961
χ(n)\chi(n) 1+ζ122-1 + \zeta_{12}^{2} 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
949.1
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
0 −0.866025 0.500000i 0 2.23205 0.133975i 0 0 0 0.500000 + 0.866025i 0
949.2 0 0.866025 + 0.500000i 0 −1.23205 + 1.86603i 0 0 0 0.500000 + 0.866025i 0
1549.1 0 −0.866025 + 0.500000i 0 2.23205 + 0.133975i 0 0 0 0.500000 0.866025i 0
1549.2 0 0.866025 0.500000i 0 −1.23205 1.86603i 0 0 0 0.500000 0.866025i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
7.c even 3 1 inner
35.j even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2940.2.bb.e 4
5.b even 2 1 inner 2940.2.bb.e 4
7.b odd 2 1 2940.2.bb.d 4
7.c even 3 1 2940.2.k.c 2
7.c even 3 1 inner 2940.2.bb.e 4
7.d odd 6 1 60.2.d.a 2
7.d odd 6 1 2940.2.bb.d 4
21.g even 6 1 180.2.d.a 2
28.f even 6 1 240.2.f.b 2
35.c odd 2 1 2940.2.bb.d 4
35.i odd 6 1 60.2.d.a 2
35.i odd 6 1 2940.2.bb.d 4
35.j even 6 1 2940.2.k.c 2
35.j even 6 1 inner 2940.2.bb.e 4
35.k even 12 1 300.2.a.a 1
35.k even 12 1 300.2.a.d 1
56.j odd 6 1 960.2.f.f 2
56.m even 6 1 960.2.f.c 2
63.i even 6 1 1620.2.r.d 4
63.k odd 6 1 1620.2.r.c 4
63.s even 6 1 1620.2.r.d 4
63.t odd 6 1 1620.2.r.c 4
84.j odd 6 1 720.2.f.c 2
105.p even 6 1 180.2.d.a 2
105.w odd 12 1 900.2.a.a 1
105.w odd 12 1 900.2.a.h 1
112.v even 12 1 3840.2.d.b 2
112.v even 12 1 3840.2.d.be 2
112.x odd 12 1 3840.2.d.o 2
112.x odd 12 1 3840.2.d.r 2
140.s even 6 1 240.2.f.b 2
140.x odd 12 1 1200.2.a.a 1
140.x odd 12 1 1200.2.a.s 1
168.ba even 6 1 2880.2.f.l 2
168.be odd 6 1 2880.2.f.p 2
280.ba even 6 1 960.2.f.c 2
280.bk odd 6 1 960.2.f.f 2
280.bp odd 12 1 4800.2.a.bf 1
280.bp odd 12 1 4800.2.a.bk 1
280.bv even 12 1 4800.2.a.bj 1
280.bv even 12 1 4800.2.a.bn 1
315.q odd 6 1 1620.2.r.c 4
315.u even 6 1 1620.2.r.d 4
315.bn odd 6 1 1620.2.r.c 4
315.bq even 6 1 1620.2.r.d 4
420.be odd 6 1 720.2.f.c 2
420.br even 12 1 3600.2.a.d 1
420.br even 12 1 3600.2.a.bm 1
560.cn odd 12 1 3840.2.d.o 2
560.cn odd 12 1 3840.2.d.r 2
560.co even 12 1 3840.2.d.b 2
560.co even 12 1 3840.2.d.be 2
840.cb even 6 1 2880.2.f.l 2
840.ct odd 6 1 2880.2.f.p 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
60.2.d.a 2 7.d odd 6 1
60.2.d.a 2 35.i odd 6 1
180.2.d.a 2 21.g even 6 1
180.2.d.a 2 105.p even 6 1
240.2.f.b 2 28.f even 6 1
240.2.f.b 2 140.s even 6 1
300.2.a.a 1 35.k even 12 1
300.2.a.d 1 35.k even 12 1
720.2.f.c 2 84.j odd 6 1
720.2.f.c 2 420.be odd 6 1
900.2.a.a 1 105.w odd 12 1
900.2.a.h 1 105.w odd 12 1
960.2.f.c 2 56.m even 6 1
960.2.f.c 2 280.ba even 6 1
960.2.f.f 2 56.j odd 6 1
960.2.f.f 2 280.bk odd 6 1
1200.2.a.a 1 140.x odd 12 1
1200.2.a.s 1 140.x odd 12 1
1620.2.r.c 4 63.k odd 6 1
1620.2.r.c 4 63.t odd 6 1
1620.2.r.c 4 315.q odd 6 1
1620.2.r.c 4 315.bn odd 6 1
1620.2.r.d 4 63.i even 6 1
1620.2.r.d 4 63.s even 6 1
1620.2.r.d 4 315.u even 6 1
1620.2.r.d 4 315.bq even 6 1
2880.2.f.l 2 168.ba even 6 1
2880.2.f.l 2 840.cb even 6 1
2880.2.f.p 2 168.be odd 6 1
2880.2.f.p 2 840.ct odd 6 1
2940.2.k.c 2 7.c even 3 1
2940.2.k.c 2 35.j even 6 1
2940.2.bb.d 4 7.b odd 2 1
2940.2.bb.d 4 7.d odd 6 1
2940.2.bb.d 4 35.c odd 2 1
2940.2.bb.d 4 35.i odd 6 1
2940.2.bb.e 4 1.a even 1 1 trivial
2940.2.bb.e 4 5.b even 2 1 inner
2940.2.bb.e 4 7.c even 3 1 inner
2940.2.bb.e 4 35.j even 6 1 inner
3600.2.a.d 1 420.br even 12 1
3600.2.a.bm 1 420.br even 12 1
3840.2.d.b 2 112.v even 12 1
3840.2.d.b 2 560.co even 12 1
3840.2.d.o 2 112.x odd 12 1
3840.2.d.o 2 560.cn odd 12 1
3840.2.d.r 2 112.x odd 12 1
3840.2.d.r 2 560.cn odd 12 1
3840.2.d.be 2 112.v even 12 1
3840.2.d.be 2 560.co even 12 1
4800.2.a.bf 1 280.bp odd 12 1
4800.2.a.bj 1 280.bv even 12 1
4800.2.a.bk 1 280.bp odd 12 1
4800.2.a.bn 1 280.bv even 12 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(2940,[χ])S_{2}^{\mathrm{new}}(2940, [\chi]):

T1124T11+16 T_{11}^{2} - 4T_{11} + 16 Copy content Toggle raw display
T13 T_{13} Copy content Toggle raw display
T19 T_{19} Copy content Toggle raw display
T3124T31+16 T_{31}^{2} - 4T_{31} + 16 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
55 T42T3++25 T^{4} - 2 T^{3} + \cdots + 25 Copy content Toggle raw display
77 T4 T^{4} Copy content Toggle raw display
1111 (T24T+16)2 (T^{2} - 4 T + 16)^{2} Copy content Toggle raw display
1313 T4 T^{4} Copy content Toggle raw display
1717 T416T2+256 T^{4} - 16T^{2} + 256 Copy content Toggle raw display
1919 T4 T^{4} Copy content Toggle raw display
2323 T416T2+256 T^{4} - 16T^{2} + 256 Copy content Toggle raw display
2929 (T6)4 (T - 6)^{4} Copy content Toggle raw display
3131 (T24T+16)2 (T^{2} - 4 T + 16)^{2} Copy content Toggle raw display
3737 T464T2+4096 T^{4} - 64T^{2} + 4096 Copy content Toggle raw display
4141 (T10)4 (T - 10)^{4} Copy content Toggle raw display
4343 (T2+16)2 (T^{2} + 16)^{2} Copy content Toggle raw display
4747 T416T2+256 T^{4} - 16T^{2} + 256 Copy content Toggle raw display
5353 T4144T2+20736 T^{4} - 144 T^{2} + 20736 Copy content Toggle raw display
5959 (T2+4T+16)2 (T^{2} + 4 T + 16)^{2} Copy content Toggle raw display
6161 (T22T+4)2 (T^{2} - 2 T + 4)^{2} Copy content Toggle raw display
6767 T416T2+256 T^{4} - 16T^{2} + 256 Copy content Toggle raw display
7171 T4 T^{4} Copy content Toggle raw display
7373 T464T2+4096 T^{4} - 64T^{2} + 4096 Copy content Toggle raw display
7979 (T2+12T+144)2 (T^{2} + 12 T + 144)^{2} Copy content Toggle raw display
8383 (T2+16)2 (T^{2} + 16)^{2} Copy content Toggle raw display
8989 (T210T+100)2 (T^{2} - 10 T + 100)^{2} Copy content Toggle raw display
9797 (T2+64)2 (T^{2} + 64)^{2} Copy content Toggle raw display
show more
show less