gp: [N,k,chi] = [2940,2,Mod(949,2940)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2940, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 3, 4]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2940.949");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [4,0,0,0,2,0,0,0,2,0,8]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a primitive root of unity ζ 12 \zeta_{12} ζ 1 2 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 2940 Z ) × \left(\mathbb{Z}/2940\mathbb{Z}\right)^\times ( Z / 2 9 4 0 Z ) × .
n n n
1081 1081 1 0 8 1
1177 1177 1 1 7 7
1471 1471 1 4 7 1
1961 1961 1 9 6 1
χ ( n ) \chi(n) χ ( n )
− 1 + ζ 12 2 -1 + \zeta_{12}^{2} − 1 + ζ 1 2 2
− 1 -1 − 1
1 1 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 2940 , [ χ ] ) S_{2}^{\mathrm{new}}(2940, [\chi]) S 2 n e w ( 2 9 4 0 , [ χ ] ) :
T 11 2 − 4 T 11 + 16 T_{11}^{2} - 4T_{11} + 16 T 1 1 2 − 4 T 1 1 + 1 6
T11^2 - 4*T11 + 16
T 13 T_{13} T 1 3
T13
T 19 T_{19} T 1 9
T19
T 31 2 − 4 T 31 + 16 T_{31}^{2} - 4T_{31} + 16 T 3 1 2 − 4 T 3 1 + 1 6
T31^2 - 4*T31 + 16
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 T^{4} T 4
T^4
3 3 3
T 4 − T 2 + 1 T^{4} - T^{2} + 1 T 4 − T 2 + 1
T^4 - T^2 + 1
5 5 5
T 4 − 2 T 3 + ⋯ + 25 T^{4} - 2 T^{3} + \cdots + 25 T 4 − 2 T 3 + ⋯ + 2 5
T^4 - 2*T^3 - T^2 - 10*T + 25
7 7 7
T 4 T^{4} T 4
T^4
11 11 1 1
( T 2 − 4 T + 16 ) 2 (T^{2} - 4 T + 16)^{2} ( T 2 − 4 T + 1 6 ) 2
(T^2 - 4*T + 16)^2
13 13 1 3
T 4 T^{4} T 4
T^4
17 17 1 7
T 4 − 16 T 2 + 256 T^{4} - 16T^{2} + 256 T 4 − 1 6 T 2 + 2 5 6
T^4 - 16*T^2 + 256
19 19 1 9
T 4 T^{4} T 4
T^4
23 23 2 3
T 4 − 16 T 2 + 256 T^{4} - 16T^{2} + 256 T 4 − 1 6 T 2 + 2 5 6
T^4 - 16*T^2 + 256
29 29 2 9
( T − 6 ) 4 (T - 6)^{4} ( T − 6 ) 4
(T - 6)^4
31 31 3 1
( T 2 − 4 T + 16 ) 2 (T^{2} - 4 T + 16)^{2} ( T 2 − 4 T + 1 6 ) 2
(T^2 - 4*T + 16)^2
37 37 3 7
T 4 − 64 T 2 + 4096 T^{4} - 64T^{2} + 4096 T 4 − 6 4 T 2 + 4 0 9 6
T^4 - 64*T^2 + 4096
41 41 4 1
( T − 10 ) 4 (T - 10)^{4} ( T − 1 0 ) 4
(T - 10)^4
43 43 4 3
( T 2 + 16 ) 2 (T^{2} + 16)^{2} ( T 2 + 1 6 ) 2
(T^2 + 16)^2
47 47 4 7
T 4 − 16 T 2 + 256 T^{4} - 16T^{2} + 256 T 4 − 1 6 T 2 + 2 5 6
T^4 - 16*T^2 + 256
53 53 5 3
T 4 − 144 T 2 + 20736 T^{4} - 144 T^{2} + 20736 T 4 − 1 4 4 T 2 + 2 0 7 3 6
T^4 - 144*T^2 + 20736
59 59 5 9
( T 2 + 4 T + 16 ) 2 (T^{2} + 4 T + 16)^{2} ( T 2 + 4 T + 1 6 ) 2
(T^2 + 4*T + 16)^2
61 61 6 1
( T 2 − 2 T + 4 ) 2 (T^{2} - 2 T + 4)^{2} ( T 2 − 2 T + 4 ) 2
(T^2 - 2*T + 4)^2
67 67 6 7
T 4 − 16 T 2 + 256 T^{4} - 16T^{2} + 256 T 4 − 1 6 T 2 + 2 5 6
T^4 - 16*T^2 + 256
71 71 7 1
T 4 T^{4} T 4
T^4
73 73 7 3
T 4 − 64 T 2 + 4096 T^{4} - 64T^{2} + 4096 T 4 − 6 4 T 2 + 4 0 9 6
T^4 - 64*T^2 + 4096
79 79 7 9
( T 2 + 12 T + 144 ) 2 (T^{2} + 12 T + 144)^{2} ( T 2 + 1 2 T + 1 4 4 ) 2
(T^2 + 12*T + 144)^2
83 83 8 3
( T 2 + 16 ) 2 (T^{2} + 16)^{2} ( T 2 + 1 6 ) 2
(T^2 + 16)^2
89 89 8 9
( T 2 − 10 T + 100 ) 2 (T^{2} - 10 T + 100)^{2} ( T 2 − 1 0 T + 1 0 0 ) 2
(T^2 - 10*T + 100)^2
97 97 9 7
( T 2 + 64 ) 2 (T^{2} + 64)^{2} ( T 2 + 6 4 ) 2
(T^2 + 64)^2
show more
show less