L(s) = 1 | + (0.5 + 0.866i)2-s + (0.5 − 0.866i)3-s + (−0.499 + 0.866i)4-s + (0.5 − 0.866i)5-s + 0.999·6-s + (1.36 − 0.366i)7-s − 0.999·8-s + 0.999·10-s + (1 + i)11-s + (0.499 + 0.866i)12-s + (−0.5 + 0.866i)13-s + (1 + 0.999i)14-s + (−0.499 − 0.866i)15-s + (−0.5 − 0.866i)16-s + (0.499 + 0.866i)20-s + (0.366 − 1.36i)21-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)2-s + (0.5 − 0.866i)3-s + (−0.499 + 0.866i)4-s + (0.5 − 0.866i)5-s + 0.999·6-s + (1.36 − 0.366i)7-s − 0.999·8-s + 0.999·10-s + (1 + i)11-s + (0.499 + 0.866i)12-s + (−0.5 + 0.866i)13-s + (1 + 0.999i)14-s + (−0.499 − 0.866i)15-s + (−0.5 − 0.866i)16-s + (0.499 + 0.866i)20-s + (0.366 − 1.36i)21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.888 - 0.459i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.888 - 0.459i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.266765704\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.266765704\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
| 37 | \( 1 + (0.5 - 0.866i)T \) |
good | 3 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 7 | \( 1 + (-1.36 + 0.366i)T + (0.866 - 0.5i)T^{2} \) |
| 11 | \( 1 + (-1 - i)T + iT^{2} \) |
| 13 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 19 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 23 | \( 1 + (1 - i)T - iT^{2} \) |
| 29 | \( 1 + iT^{2} \) |
| 31 | \( 1 + T + T^{2} \) |
| 41 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + iT - T^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (1.36 + 0.366i)T + (0.866 + 0.5i)T^{2} \) |
| 61 | \( 1 + (0.366 + 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (1.73 + i)T + (0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 - iT^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.744918097350213145352742707939, −8.061436236222512281588085301376, −7.39543012121670606473748436837, −6.96433300783165662911454341348, −5.99764561758293062944112577559, −4.94522656567518875200642168861, −4.62262723815246689999144778096, −3.70871764324636829082618824467, −1.92000757654363099373870494719, −1.70567787575489636158966377567,
1.43355795155110563840772398439, 2.48009492137445722880490452763, 3.24186271827288508707532292692, 4.01062486430068073345701601785, 4.77196016251556714169107841172, 5.68385665024294844466609732940, 6.23657639029656423688377238112, 7.43340238240120863292042633022, 8.548031844796485534670684792423, 8.929135413885952907577493325162