L(s) = 1 | + (0.5 + 0.866i)2-s + (0.5 − 0.866i)3-s + (−0.499 + 0.866i)4-s + (0.5 − 0.866i)5-s + 0.999·6-s + (1.36 − 0.366i)7-s − 0.999·8-s + 0.999·10-s + (1 + i)11-s + (0.499 + 0.866i)12-s + (−0.5 + 0.866i)13-s + (1 + 0.999i)14-s + (−0.499 − 0.866i)15-s + (−0.5 − 0.866i)16-s + (0.499 + 0.866i)20-s + (0.366 − 1.36i)21-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)2-s + (0.5 − 0.866i)3-s + (−0.499 + 0.866i)4-s + (0.5 − 0.866i)5-s + 0.999·6-s + (1.36 − 0.366i)7-s − 0.999·8-s + 0.999·10-s + (1 + i)11-s + (0.499 + 0.866i)12-s + (−0.5 + 0.866i)13-s + (1 + 0.999i)14-s + (−0.499 − 0.866i)15-s + (−0.5 − 0.866i)16-s + (0.499 + 0.866i)20-s + (0.366 − 1.36i)21-s + ⋯ |
Λ(s)=(=(2960s/2ΓC(s)L(s)(0.888−0.459i)Λ(1−s)
Λ(s)=(=(2960s/2ΓC(s)L(s)(0.888−0.459i)Λ(1−s)
Degree: |
2 |
Conductor: |
2960
= 24⋅5⋅37
|
Sign: |
0.888−0.459i
|
Analytic conductor: |
1.47723 |
Root analytic conductor: |
1.21541 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2960(1173,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2960, ( :0), 0.888−0.459i)
|
Particular Values
L(21) |
≈ |
2.266765704 |
L(21) |
≈ |
2.266765704 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5−0.866i)T |
| 5 | 1+(−0.5+0.866i)T |
| 37 | 1+(0.5−0.866i)T |
good | 3 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 7 | 1+(−1.36+0.366i)T+(0.866−0.5i)T2 |
| 11 | 1+(−1−i)T+iT2 |
| 13 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 17 | 1+(0.866+0.5i)T2 |
| 19 | 1+(0.866−0.5i)T2 |
| 23 | 1+(1−i)T−iT2 |
| 29 | 1+iT2 |
| 31 | 1+T+T2 |
| 41 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 43 | 1+iT−T2 |
| 47 | 1−iT2 |
| 53 | 1+(−0.866+0.5i)T+(0.5−0.866i)T2 |
| 59 | 1+(1.36+0.366i)T+(0.866+0.5i)T2 |
| 61 | 1+(0.366+1.36i)T+(−0.866+0.5i)T2 |
| 67 | 1+(0.5+0.866i)T2 |
| 71 | 1+(1.73+i)T+(0.5+0.866i)T2 |
| 73 | 1−iT2 |
| 79 | 1+(0.5+0.866i)T2 |
| 83 | 1+(−0.5+0.866i)T2 |
| 89 | 1+(−0.5+0.866i)T2 |
| 97 | 1−iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.744918097350213145352742707939, −8.061436236222512281588085301376, −7.39543012121670606473748436837, −6.96433300783165662911454341348, −5.99764561758293062944112577559, −4.94522656567518875200642168861, −4.62262723815246689999144778096, −3.70871764324636829082618824467, −1.92000757654363099373870494719, −1.70567787575489636158966377567,
1.43355795155110563840772398439, 2.48009492137445722880490452763, 3.24186271827288508707532292692, 4.01062486430068073345701601785, 4.77196016251556714169107841172, 5.68385665024294844466609732940, 6.23657639029656423688377238112, 7.43340238240120863292042633022, 8.548031844796485534670684792423, 8.929135413885952907577493325162