Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [2960,1,Mod(877,2960)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2960, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([0, 9, 3, 4]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2960.877");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 2960.dn (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Projective image: | |
Projective field: | Galois closure of 4.0.350464000.5 |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The -expansion and trace form are shown below.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
877.1 |
|
0.500000 | + | 0.866025i | 0.500000 | − | 0.866025i | −0.500000 | + | 0.866025i | 0.500000 | − | 0.866025i | 1.00000 | −0.366025 | − | 1.36603i | −1.00000 | 0 | 1.00000 | ||||||||||||||||||||
1173.1 | 0.500000 | + | 0.866025i | 0.500000 | − | 0.866025i | −0.500000 | + | 0.866025i | 0.500000 | − | 0.866025i | 1.00000 | 1.36603 | − | 0.366025i | −1.00000 | 0 | 1.00000 | |||||||||||||||||||||
2637.1 | 0.500000 | − | 0.866025i | 0.500000 | + | 0.866025i | −0.500000 | − | 0.866025i | 0.500000 | + | 0.866025i | 1.00000 | 1.36603 | + | 0.366025i | −1.00000 | 0 | 1.00000 | |||||||||||||||||||||
2933.1 | 0.500000 | − | 0.866025i | 0.500000 | + | 0.866025i | −0.500000 | − | 0.866025i | 0.500000 | + | 0.866025i | 1.00000 | −0.366025 | + | 1.36603i | −1.00000 | 0 | 1.00000 | |||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
37.c | even | 3 | 1 | inner |
80.t | odd | 4 | 1 | inner |
2960.dn | odd | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 2960.1.dn.a | ✓ | 4 |
5.c | odd | 4 | 1 | 2960.1.fm.a | yes | 4 | |
16.e | even | 4 | 1 | 2960.1.fm.a | yes | 4 | |
37.c | even | 3 | 1 | inner | 2960.1.dn.a | ✓ | 4 |
80.t | odd | 4 | 1 | inner | 2960.1.dn.a | ✓ | 4 |
185.s | odd | 12 | 1 | 2960.1.fm.a | yes | 4 | |
592.bj | even | 12 | 1 | 2960.1.fm.a | yes | 4 | |
2960.dn | odd | 12 | 1 | inner | 2960.1.dn.a | ✓ | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
2960.1.dn.a | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
2960.1.dn.a | ✓ | 4 | 37.c | even | 3 | 1 | inner |
2960.1.dn.a | ✓ | 4 | 80.t | odd | 4 | 1 | inner |
2960.1.dn.a | ✓ | 4 | 2960.dn | odd | 12 | 1 | inner |
2960.1.fm.a | yes | 4 | 5.c | odd | 4 | 1 | |
2960.1.fm.a | yes | 4 | 16.e | even | 4 | 1 | |
2960.1.fm.a | yes | 4 | 185.s | odd | 12 | 1 | |
2960.1.fm.a | yes | 4 | 592.bj | even | 12 | 1 |
Hecke kernels
This newform subspace is the entire newspace .