Properties

Label 2960.1.dn.a
Level 29602960
Weight 11
Character orbit 2960.dn
Analytic conductor 1.4771.477
Analytic rank 00
Dimension 44
Projective image S4S_{4}
CM/RM no
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2960,1,Mod(877,2960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2960, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 9, 3, 4]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2960.877");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 2960=24537 2960 = 2^{4} \cdot 5 \cdot 37
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2960.dn (of order 1212, degree 44, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.477232437391.47723243739
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: S4S_{4}
Projective field: Galois closure of 4.0.350464000.5

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+ζ122q2ζ124q3+ζ124q4ζ124q5+q6+(ζ124ζ12)q7q8+q10+(ζ123+1)q11+ζ122q12+ζ12q98+O(q100) q + \zeta_{12}^{2} q^{2} - \zeta_{12}^{4} q^{3} + \zeta_{12}^{4} q^{4} - \zeta_{12}^{4} q^{5} + q^{6} + ( - \zeta_{12}^{4} - \zeta_{12}) q^{7} - q^{8} + q^{10} + ( - \zeta_{12}^{3} + 1) q^{11} + \zeta_{12}^{2} q^{12} + \cdots - \zeta_{12} q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q2+2q32q4+2q5+4q6+2q74q8+4q10+4q11+2q122q13+4q142q152q16+2q202q21+2q224q232q24+2q96+O(q100) 4 q + 2 q^{2} + 2 q^{3} - 2 q^{4} + 2 q^{5} + 4 q^{6} + 2 q^{7} - 4 q^{8} + 4 q^{10} + 4 q^{11} + 2 q^{12} - 2 q^{13} + 4 q^{14} - 2 q^{15} - 2 q^{16} + 2 q^{20} - 2 q^{21} + 2 q^{22} - 4 q^{23} - 2 q^{24}+ \cdots - 2 q^{96}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2960Z)×\left(\mathbb{Z}/2960\mathbb{Z}\right)^\times.

nn 741741 17771777 24812481 25912591
χ(n)\chi(n) ζ123-\zeta_{12}^{3} ζ123\zeta_{12}^{3} ζ124\zeta_{12}^{4} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
877.1
0.866025 + 0.500000i
−0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 0.500000i
0.500000 + 0.866025i 0.500000 0.866025i −0.500000 + 0.866025i 0.500000 0.866025i 1.00000 −0.366025 1.36603i −1.00000 0 1.00000
1173.1 0.500000 + 0.866025i 0.500000 0.866025i −0.500000 + 0.866025i 0.500000 0.866025i 1.00000 1.36603 0.366025i −1.00000 0 1.00000
2637.1 0.500000 0.866025i 0.500000 + 0.866025i −0.500000 0.866025i 0.500000 + 0.866025i 1.00000 1.36603 + 0.366025i −1.00000 0 1.00000
2933.1 0.500000 0.866025i 0.500000 + 0.866025i −0.500000 0.866025i 0.500000 + 0.866025i 1.00000 −0.366025 + 1.36603i −1.00000 0 1.00000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
37.c even 3 1 inner
80.t odd 4 1 inner
2960.dn odd 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2960.1.dn.a 4
5.c odd 4 1 2960.1.fm.a yes 4
16.e even 4 1 2960.1.fm.a yes 4
37.c even 3 1 inner 2960.1.dn.a 4
80.t odd 4 1 inner 2960.1.dn.a 4
185.s odd 12 1 2960.1.fm.a yes 4
592.bj even 12 1 2960.1.fm.a yes 4
2960.dn odd 12 1 inner 2960.1.dn.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2960.1.dn.a 4 1.a even 1 1 trivial
2960.1.dn.a 4 37.c even 3 1 inner
2960.1.dn.a 4 80.t odd 4 1 inner
2960.1.dn.a 4 2960.dn odd 12 1 inner
2960.1.fm.a yes 4 5.c odd 4 1
2960.1.fm.a yes 4 16.e even 4 1
2960.1.fm.a yes 4 185.s odd 12 1
2960.1.fm.a yes 4 592.bj even 12 1

Hecke kernels

This newform subspace is the entire newspace S1new(2960,[χ])S_{1}^{\mathrm{new}}(2960, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
33 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
55 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
77 T42T3++4 T^{4} - 2 T^{3} + \cdots + 4 Copy content Toggle raw display
1111 (T22T+2)2 (T^{2} - 2 T + 2)^{2} Copy content Toggle raw display
1313 (T2+T+1)2 (T^{2} + T + 1)^{2} Copy content Toggle raw display
1717 T4 T^{4} Copy content Toggle raw display
1919 T4 T^{4} Copy content Toggle raw display
2323 (T2+2T+2)2 (T^{2} + 2 T + 2)^{2} Copy content Toggle raw display
2929 T4 T^{4} Copy content Toggle raw display
3131 (T+1)4 (T + 1)^{4} Copy content Toggle raw display
3737 (T2+T+1)2 (T^{2} + T + 1)^{2} Copy content Toggle raw display
4141 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
4343 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
4747 T4 T^{4} Copy content Toggle raw display
5353 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
5959 T4+2T3++4 T^{4} + 2 T^{3} + \cdots + 4 Copy content Toggle raw display
6161 T42T3++4 T^{4} - 2 T^{3} + \cdots + 4 Copy content Toggle raw display
6767 T4 T^{4} Copy content Toggle raw display
7171 T44T2+16 T^{4} - 4T^{2} + 16 Copy content Toggle raw display
7373 T4 T^{4} Copy content Toggle raw display
7979 T4 T^{4} Copy content Toggle raw display
8383 T4 T^{4} Copy content Toggle raw display
8989 T4 T^{4} Copy content Toggle raw display
9797 T4 T^{4} Copy content Toggle raw display
show more
show less