Properties

Label 2960.1.dn.a
Level $2960$
Weight $1$
Character orbit 2960.dn
Analytic conductor $1.477$
Analytic rank $0$
Dimension $4$
Projective image $S_{4}$
CM/RM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2960,1,Mod(877,2960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2960, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 9, 3, 4]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2960.877");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2960 = 2^{4} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2960.dn (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.47723243739\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(S_{4}\)
Projective field: Galois closure of 4.0.350464000.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{12}^{2} q^{2} - \zeta_{12}^{4} q^{3} + \zeta_{12}^{4} q^{4} - \zeta_{12}^{4} q^{5} + q^{6} + ( - \zeta_{12}^{4} - \zeta_{12}) q^{7} - q^{8} + q^{10} + ( - \zeta_{12}^{3} + 1) q^{11} + \zeta_{12}^{2} q^{12} + \cdots - \zeta_{12} q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 2 q^{3} - 2 q^{4} + 2 q^{5} + 4 q^{6} + 2 q^{7} - 4 q^{8} + 4 q^{10} + 4 q^{11} + 2 q^{12} - 2 q^{13} + 4 q^{14} - 2 q^{15} - 2 q^{16} + 2 q^{20} - 2 q^{21} + 2 q^{22} - 4 q^{23} - 2 q^{24}+ \cdots - 2 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2960\mathbb{Z}\right)^\times\).

\(n\) \(741\) \(1777\) \(2481\) \(2591\)
\(\chi(n)\) \(-\zeta_{12}^{3}\) \(\zeta_{12}^{3}\) \(\zeta_{12}^{4}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
877.1
0.866025 + 0.500000i
−0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 0.500000i
0.500000 + 0.866025i 0.500000 0.866025i −0.500000 + 0.866025i 0.500000 0.866025i 1.00000 −0.366025 1.36603i −1.00000 0 1.00000
1173.1 0.500000 + 0.866025i 0.500000 0.866025i −0.500000 + 0.866025i 0.500000 0.866025i 1.00000 1.36603 0.366025i −1.00000 0 1.00000
2637.1 0.500000 0.866025i 0.500000 + 0.866025i −0.500000 0.866025i 0.500000 + 0.866025i 1.00000 1.36603 + 0.366025i −1.00000 0 1.00000
2933.1 0.500000 0.866025i 0.500000 + 0.866025i −0.500000 0.866025i 0.500000 + 0.866025i 1.00000 −0.366025 + 1.36603i −1.00000 0 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
37.c even 3 1 inner
80.t odd 4 1 inner
2960.dn odd 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2960.1.dn.a 4
5.c odd 4 1 2960.1.fm.a yes 4
16.e even 4 1 2960.1.fm.a yes 4
37.c even 3 1 inner 2960.1.dn.a 4
80.t odd 4 1 inner 2960.1.dn.a 4
185.s odd 12 1 2960.1.fm.a yes 4
592.bj even 12 1 2960.1.fm.a yes 4
2960.dn odd 12 1 inner 2960.1.dn.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2960.1.dn.a 4 1.a even 1 1 trivial
2960.1.dn.a 4 37.c even 3 1 inner
2960.1.dn.a 4 80.t odd 4 1 inner
2960.1.dn.a 4 2960.dn odd 12 1 inner
2960.1.fm.a yes 4 5.c odd 4 1
2960.1.fm.a yes 4 16.e even 4 1
2960.1.fm.a yes 4 185.s odd 12 1
2960.1.fm.a yes 4 592.bj even 12 1

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(2960, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} - 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$11$ \( (T^{2} - 2 T + 2)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} + 2 T + 2)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( (T + 1)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$43$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$59$ \( T^{4} + 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$61$ \( T^{4} - 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( T^{4} - 4T^{2} + 16 \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less