L(s) = 1 | + (0.5 − 0.866i)2-s + (0.5 + 0.866i)3-s + (−0.499 − 0.866i)4-s + (0.5 + 0.866i)5-s + 0.999·6-s + (−0.366 + 1.36i)7-s − 0.999·8-s + 0.999·10-s + (1 + i)11-s + (0.499 − 0.866i)12-s + (−0.5 − 0.866i)13-s + (0.999 + i)14-s + (−0.499 + 0.866i)15-s + (−0.5 + 0.866i)16-s + (0.499 − 0.866i)20-s + (−1.36 + 0.366i)21-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s + (0.5 + 0.866i)3-s + (−0.499 − 0.866i)4-s + (0.5 + 0.866i)5-s + 0.999·6-s + (−0.366 + 1.36i)7-s − 0.999·8-s + 0.999·10-s + (1 + i)11-s + (0.499 − 0.866i)12-s + (−0.5 − 0.866i)13-s + (0.999 + i)14-s + (−0.499 + 0.866i)15-s + (−0.5 + 0.866i)16-s + (0.499 − 0.866i)20-s + (−1.36 + 0.366i)21-s + ⋯ |
Λ(s)=(=(2960s/2ΓC(s)L(s)(0.716−0.697i)Λ(1−s)
Λ(s)=(=(2960s/2ΓC(s)L(s)(0.716−0.697i)Λ(1−s)
Degree: |
2 |
Conductor: |
2960
= 24⋅5⋅37
|
Sign: |
0.716−0.697i
|
Analytic conductor: |
1.47723 |
Root analytic conductor: |
1.21541 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2960(2933,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2960, ( :0), 0.716−0.697i)
|
Particular Values
L(21) |
≈ |
1.829544487 |
L(21) |
≈ |
1.829544487 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5+0.866i)T |
| 5 | 1+(−0.5−0.866i)T |
| 37 | 1+(0.5+0.866i)T |
good | 3 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 7 | 1+(0.366−1.36i)T+(−0.866−0.5i)T2 |
| 11 | 1+(−1−i)T+iT2 |
| 13 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 17 | 1+(−0.866+0.5i)T2 |
| 19 | 1+(−0.866−0.5i)T2 |
| 23 | 1+(1−i)T−iT2 |
| 29 | 1+iT2 |
| 31 | 1+T+T2 |
| 41 | 1+(−0.866+0.5i)T+(0.5−0.866i)T2 |
| 43 | 1+iT−T2 |
| 47 | 1−iT2 |
| 53 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 59 | 1+(−0.366−1.36i)T+(−0.866+0.5i)T2 |
| 61 | 1+(−1.36−0.366i)T+(0.866+0.5i)T2 |
| 67 | 1+(0.5−0.866i)T2 |
| 71 | 1+(−1.73+i)T+(0.5−0.866i)T2 |
| 73 | 1−iT2 |
| 79 | 1+(0.5−0.866i)T2 |
| 83 | 1+(−0.5−0.866i)T2 |
| 89 | 1+(−0.5−0.866i)T2 |
| 97 | 1−iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.268180963473405842042714995055, −8.823109352774628446698623875492, −7.46266844348945936290803356838, −6.51532197080721099875161462714, −5.71495938869540365615727762790, −5.15888680910782515941135938460, −3.94068508686296449729205165612, −3.48456386823877800941004806261, −2.51822585297652514895331950761, −1.91443953037833343238994347086,
0.933770522305192184577127610965, 2.14351800040779040775867802014, 3.46526693871285102050131988672, 4.23485356235168887897103097655, 4.89232779640381181704043729427, 6.10861246519775590578475009891, 6.58652281751298125637122947873, 7.20896097423484676339364969377, 8.061689875557413560755688129974, 8.505426219567040381271505592534