L(s) = 1 | + (0.5 − 0.866i)2-s + (0.5 + 0.866i)3-s + (−0.499 − 0.866i)4-s + (0.5 + 0.866i)5-s + 0.999·6-s + (−0.366 + 1.36i)7-s − 0.999·8-s + 0.999·10-s + (1 + i)11-s + (0.499 − 0.866i)12-s + (−0.5 − 0.866i)13-s + (0.999 + i)14-s + (−0.499 + 0.866i)15-s + (−0.5 + 0.866i)16-s + (0.499 − 0.866i)20-s + (−1.36 + 0.366i)21-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s + (0.5 + 0.866i)3-s + (−0.499 − 0.866i)4-s + (0.5 + 0.866i)5-s + 0.999·6-s + (−0.366 + 1.36i)7-s − 0.999·8-s + 0.999·10-s + (1 + i)11-s + (0.499 − 0.866i)12-s + (−0.5 − 0.866i)13-s + (0.999 + i)14-s + (−0.499 + 0.866i)15-s + (−0.5 + 0.866i)16-s + (0.499 − 0.866i)20-s + (−1.36 + 0.366i)21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.716 - 0.697i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.716 - 0.697i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.829544487\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.829544487\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 5 | \( 1 + (-0.5 - 0.866i)T \) |
| 37 | \( 1 + (0.5 + 0.866i)T \) |
good | 3 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 7 | \( 1 + (0.366 - 1.36i)T + (-0.866 - 0.5i)T^{2} \) |
| 11 | \( 1 + (-1 - i)T + iT^{2} \) |
| 13 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 19 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 23 | \( 1 + (1 - i)T - iT^{2} \) |
| 29 | \( 1 + iT^{2} \) |
| 31 | \( 1 + T + T^{2} \) |
| 41 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + iT - T^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (-0.366 - 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| 61 | \( 1 + (-1.36 - 0.366i)T + (0.866 + 0.5i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (-1.73 + i)T + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 - iT^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.268180963473405842042714995055, −8.823109352774628446698623875492, −7.46266844348945936290803356838, −6.51532197080721099875161462714, −5.71495938869540365615727762790, −5.15888680910782515941135938460, −3.94068508686296449729205165612, −3.48456386823877800941004806261, −2.51822585297652514895331950761, −1.91443953037833343238994347086,
0.933770522305192184577127610965, 2.14351800040779040775867802014, 3.46526693871285102050131988672, 4.23485356235168887897103097655, 4.89232779640381181704043729427, 6.10861246519775590578475009891, 6.58652281751298125637122947873, 7.20896097423484676339364969377, 8.061689875557413560755688129974, 8.505426219567040381271505592534