Properties

Label 2-2960-1.1-c1-0-12
Degree $2$
Conductor $2960$
Sign $1$
Analytic cond. $23.6357$
Root an. cond. $4.86165$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 5-s + 3·7-s + 6·9-s − 5·11-s + 2·13-s + 3·15-s + 4·17-s + 4·19-s − 9·21-s − 6·23-s + 25-s − 9·27-s + 6·29-s + 4·31-s + 15·33-s − 3·35-s − 37-s − 6·39-s − 9·41-s − 10·43-s − 6·45-s + 11·47-s + 2·49-s − 12·51-s − 11·53-s + 5·55-s + ⋯
L(s)  = 1  − 1.73·3-s − 0.447·5-s + 1.13·7-s + 2·9-s − 1.50·11-s + 0.554·13-s + 0.774·15-s + 0.970·17-s + 0.917·19-s − 1.96·21-s − 1.25·23-s + 1/5·25-s − 1.73·27-s + 1.11·29-s + 0.718·31-s + 2.61·33-s − 0.507·35-s − 0.164·37-s − 0.960·39-s − 1.40·41-s − 1.52·43-s − 0.894·45-s + 1.60·47-s + 2/7·49-s − 1.68·51-s − 1.51·53-s + 0.674·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2960 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2960\)    =    \(2^{4} \cdot 5 \cdot 37\)
Sign: $1$
Analytic conductor: \(23.6357\)
Root analytic conductor: \(4.86165\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2960,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8826363900\)
\(L(\frac12)\) \(\approx\) \(0.8826363900\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
37 \( 1 + T \)
good3 \( 1 + p T + p T^{2} \)
7 \( 1 - 3 T + p T^{2} \)
11 \( 1 + 5 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 4 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
41 \( 1 + 9 T + p T^{2} \)
43 \( 1 + 10 T + p T^{2} \)
47 \( 1 - 11 T + p T^{2} \)
53 \( 1 + 11 T + p T^{2} \)
59 \( 1 - 8 T + p T^{2} \)
61 \( 1 + 8 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 + 3 T + p T^{2} \)
73 \( 1 - 7 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 - 9 T + p T^{2} \)
89 \( 1 + 16 T + p T^{2} \)
97 \( 1 - 12 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.384495914592605943198193585522, −7.967716714125813453392078887841, −7.23620303213902323108245082851, −6.31278841946632243083099496990, −5.49557340632345683992432020156, −5.06756007617691541853072307264, −4.40343244869593798657772342377, −3.20508638243343033078558974345, −1.70436716945358454725317464833, −0.65053381069411396111812346191, 0.65053381069411396111812346191, 1.70436716945358454725317464833, 3.20508638243343033078558974345, 4.40343244869593798657772342377, 5.06756007617691541853072307264, 5.49557340632345683992432020156, 6.31278841946632243083099496990, 7.23620303213902323108245082851, 7.967716714125813453392078887841, 8.384495914592605943198193585522

Graph of the $Z$-function along the critical line