Properties

Label 1.3.d
Base field $\F_{3}$
Dimension $1$
$p$-rank $0$
Ordinary no
Supersingular yes
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{3}$
Dimension:  $1$
L-polynomial:  $1 + 3 x + 3 x^{2}$
Frobenius angles:  $\pm0.833333333333$
Angle rank:  $0$ (numerical)
Number field:  \(\Q(\sqrt{-3}) \)
Galois group:  $C_2$
Jacobians:  $1$
Isomorphism classes:  1

This isogeny class is simple and geometrically simple, primitive, not ordinary, and supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is supersingular.

$p$-rank:  $0$
Slopes:  $[1/2, 1/2]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $7$ $7$ $28$ $91$ $217$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $7$ $7$ $28$ $91$ $217$ $784$ $2107$ $6643$ $19684$ $58807$

Jacobians and polarizations

This isogeny class contains the Jacobian of 1 curve (which is hyperelliptic), and hence is principally polarizable:

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{3^{6}}$.

Endomorphism algebra over $\F_{3}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}) \).
Endomorphism algebra over $\overline{\F}_{3}$
The base change of $A$ to $\F_{3^{6}}$ is the simple isogeny class 1.729.cc and its endomorphism algebra is the quaternion algebra over \(\Q\) ramified at $3$ and $\infty$.
Remainder of endomorphism lattice by field

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
1.3.ad$2$1.9.ad
1.3.ad$3$1.27.a
1.3.a$3$1.27.a

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
1.3.ad$2$1.9.ad
1.3.ad$3$1.27.a
1.3.a$3$1.27.a
1.3.a$6$1.729.cc