L(s) = 1 | + (−0.939 − 1.62i)2-s + (−0.766 + 1.32i)4-s + (1.43 − 2.49i)5-s + (0.326 + 0.565i)7-s − 0.879·8-s − 5.41·10-s + (−0.5 − 0.866i)11-s + (3.37 − 5.85i)13-s + (0.613 − 1.06i)14-s + (2.35 + 4.08i)16-s − 0.184·17-s − 5.22·19-s + (2.20 + 3.82i)20-s + (−0.939 + 1.62i)22-s + (−1.59 + 2.75i)23-s + ⋯ |
L(s) = 1 | + (−0.664 − 1.15i)2-s + (−0.383 + 0.663i)4-s + (0.643 − 1.11i)5-s + (0.123 + 0.213i)7-s − 0.310·8-s − 1.71·10-s + (−0.150 − 0.261i)11-s + (0.937 − 1.62i)13-s + (0.163 − 0.283i)14-s + (0.589 + 1.02i)16-s − 0.0448·17-s − 1.19·19-s + (0.493 + 0.854i)20-s + (−0.200 + 0.347i)22-s + (−0.332 + 0.575i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 297 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.939 + 0.342i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 297 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.939 + 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.162391 - 0.920966i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.162391 - 0.920966i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 + (0.5 + 0.866i)T \) |
good | 2 | \( 1 + (0.939 + 1.62i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (-1.43 + 2.49i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (-0.326 - 0.565i)T + (-3.5 + 6.06i)T^{2} \) |
| 13 | \( 1 + (-3.37 + 5.85i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 0.184T + 17T^{2} \) |
| 19 | \( 1 + 5.22T + 19T^{2} \) |
| 23 | \( 1 + (1.59 - 2.75i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (2.01 + 3.48i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (0.553 - 0.957i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 0.106T + 37T^{2} \) |
| 41 | \( 1 + (2.80 - 4.86i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1.92 + 3.34i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-6.00 - 10.3i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 10.0T + 53T^{2} \) |
| 59 | \( 1 + (-5.27 + 9.14i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.67 - 6.36i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.90 + 10.2i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 2.47T + 71T^{2} \) |
| 73 | \( 1 - 10.4T + 73T^{2} \) |
| 79 | \( 1 + (-0.733 - 1.27i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (0.520 + 0.902i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 3.01T + 89T^{2} \) |
| 97 | \( 1 + (-2.86 - 4.97i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.15163333380977222181912900135, −10.42647146572784329545542944206, −9.573707659301433004451754353606, −8.661215908162822105077658541302, −8.122907256293427768156238648713, −6.11004028884001231456362969889, −5.32064532355896605075344769924, −3.67436588405866149105852126516, −2.22081221963308618881918913969, −0.884530217831679671929488702766,
2.24683531682321304980551133672, 3.98648796847516815450578457915, 5.70144495798354710881880417766, 6.70535181082041685499618110259, 6.97548671456027712794225657824, 8.372300765466276839193214309410, 9.103120815496979919447757794946, 10.17239154420141317267422700749, 10.96180165205733018514587104901, 12.05163482902305795797138903105