L(s) = 1 | + (−0.939 − 1.62i)2-s + (−0.766 + 1.32i)4-s + (1.43 − 2.49i)5-s + (0.326 + 0.565i)7-s − 0.879·8-s − 5.41·10-s + (−0.5 − 0.866i)11-s + (3.37 − 5.85i)13-s + (0.613 − 1.06i)14-s + (2.35 + 4.08i)16-s − 0.184·17-s − 5.22·19-s + (2.20 + 3.82i)20-s + (−0.939 + 1.62i)22-s + (−1.59 + 2.75i)23-s + ⋯ |
L(s) = 1 | + (−0.664 − 1.15i)2-s + (−0.383 + 0.663i)4-s + (0.643 − 1.11i)5-s + (0.123 + 0.213i)7-s − 0.310·8-s − 1.71·10-s + (−0.150 − 0.261i)11-s + (0.937 − 1.62i)13-s + (0.163 − 0.283i)14-s + (0.589 + 1.02i)16-s − 0.0448·17-s − 1.19·19-s + (0.493 + 0.854i)20-s + (−0.200 + 0.347i)22-s + (−0.332 + 0.575i)23-s + ⋯ |
Λ(s)=(=(297s/2ΓC(s)L(s)(−0.939+0.342i)Λ(2−s)
Λ(s)=(=(297s/2ΓC(s+1/2)L(s)(−0.939+0.342i)Λ(1−s)
Degree: |
2 |
Conductor: |
297
= 33⋅11
|
Sign: |
−0.939+0.342i
|
Analytic conductor: |
2.37155 |
Root analytic conductor: |
1.53998 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ297(199,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 297, ( :1/2), −0.939+0.342i)
|
Particular Values
L(1) |
≈ |
0.162391−0.920966i |
L(21) |
≈ |
0.162391−0.920966i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | 1+(0.5+0.866i)T |
good | 2 | 1+(0.939+1.62i)T+(−1+1.73i)T2 |
| 5 | 1+(−1.43+2.49i)T+(−2.5−4.33i)T2 |
| 7 | 1+(−0.326−0.565i)T+(−3.5+6.06i)T2 |
| 13 | 1+(−3.37+5.85i)T+(−6.5−11.2i)T2 |
| 17 | 1+0.184T+17T2 |
| 19 | 1+5.22T+19T2 |
| 23 | 1+(1.59−2.75i)T+(−11.5−19.9i)T2 |
| 29 | 1+(2.01+3.48i)T+(−14.5+25.1i)T2 |
| 31 | 1+(0.553−0.957i)T+(−15.5−26.8i)T2 |
| 37 | 1−0.106T+37T2 |
| 41 | 1+(2.80−4.86i)T+(−20.5−35.5i)T2 |
| 43 | 1+(1.92+3.34i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−6.00−10.3i)T+(−23.5+40.7i)T2 |
| 53 | 1−10.0T+53T2 |
| 59 | 1+(−5.27+9.14i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−3.67−6.36i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−5.90+10.2i)T+(−33.5−58.0i)T2 |
| 71 | 1−2.47T+71T2 |
| 73 | 1−10.4T+73T2 |
| 79 | 1+(−0.733−1.27i)T+(−39.5+68.4i)T2 |
| 83 | 1+(0.520+0.902i)T+(−41.5+71.8i)T2 |
| 89 | 1−3.01T+89T2 |
| 97 | 1+(−2.86−4.97i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.15163333380977222181912900135, −10.42647146572784329545542944206, −9.573707659301433004451754353606, −8.661215908162822105077658541302, −8.122907256293427768156238648713, −6.11004028884001231456362969889, −5.32064532355896605075344769924, −3.67436588405866149105852126516, −2.22081221963308618881918913969, −0.884530217831679671929488702766,
2.24683531682321304980551133672, 3.98648796847516815450578457915, 5.70144495798354710881880417766, 6.70535181082041685499618110259, 6.97548671456027712794225657824, 8.372300765466276839193214309410, 9.103120815496979919447757794946, 10.17239154420141317267422700749, 10.96180165205733018514587104901, 12.05163482902305795797138903105