Properties

Label 297.2.e.d
Level $297$
Weight $2$
Character orbit 297.e
Analytic conductor $2.372$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [297,2,Mod(100,297)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(297, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("297.100");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{5} + \beta_{4} + \cdots - \beta_{2}) q^{2} + \beta_{5} q^{4} + ( - \beta_{5} + \beta_{3} - \beta_{2} + \cdots + 1) q^{5} + ( - \beta_{2} + \beta_1) q^{7} + (\beta_{4} + 1) q^{8} + (2 \beta_{4} + \beta_{3} - 2) q^{10}+ \cdots + (5 \beta_{4} + 3 \beta_{3} - 4) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{5} + 3 q^{7} + 6 q^{8} - 12 q^{10} - 3 q^{11} + 9 q^{13} - 3 q^{14} + 6 q^{16} + 6 q^{17} - 18 q^{19} + 3 q^{20} - 6 q^{23} + 6 q^{25} - 24 q^{26} - 6 q^{28} - 6 q^{29} + 9 q^{31} + 9 q^{32}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{18}^{3} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \zeta_{18}^{5} + \zeta_{18} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\zeta_{18}^{4} + \zeta_{18}^{2} + \zeta_{18} \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( -\zeta_{18}^{5} + \zeta_{18}^{4} \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -\zeta_{18}^{5} - \zeta_{18}^{4} + \zeta_{18} \) Copy content Toggle raw display
\(\zeta_{18}\)\(=\) \( ( \beta_{5} + \beta_{4} + 2\beta_{2} ) / 3 \) Copy content Toggle raw display
\(\zeta_{18}^{2}\)\(=\) \( ( -2\beta_{5} + \beta_{4} + 3\beta_{3} - \beta_{2} ) / 3 \) Copy content Toggle raw display
\(\zeta_{18}^{3}\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\zeta_{18}^{4}\)\(=\) \( ( -\beta_{5} + 2\beta_{4} + \beta_{2} ) / 3 \) Copy content Toggle raw display
\(\zeta_{18}^{5}\)\(=\) \( ( -\beta_{5} - \beta_{4} + \beta_{2} ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(-1 + \beta_{1}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
100.1
−0.766044 0.642788i
0.939693 0.342020i
−0.173648 + 0.984808i
−0.766044 + 0.642788i
0.939693 + 0.342020i
−0.173648 0.984808i
−0.939693 + 1.62760i 0 −0.766044 1.32683i 1.43969 + 2.49362i 0 0.326352 0.565258i −0.879385 0 −5.41147
100.2 0.173648 0.300767i 0 0.939693 + 1.62760i 0.326352 + 0.565258i 0 −0.266044 + 0.460802i 1.34730 0 0.226682
100.3 0.766044 1.32683i 0 −0.173648 0.300767i −0.266044 0.460802i 0 1.43969 2.49362i 2.53209 0 −0.815207
199.1 −0.939693 1.62760i 0 −0.766044 + 1.32683i 1.43969 2.49362i 0 0.326352 + 0.565258i −0.879385 0 −5.41147
199.2 0.173648 + 0.300767i 0 0.939693 1.62760i 0.326352 0.565258i 0 −0.266044 0.460802i 1.34730 0 0.226682
199.3 0.766044 + 1.32683i 0 −0.173648 + 0.300767i −0.266044 + 0.460802i 0 1.43969 + 2.49362i 2.53209 0 −0.815207
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 100.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 297.2.e.d 6
3.b odd 2 1 99.2.e.d 6
9.c even 3 1 inner 297.2.e.d 6
9.c even 3 1 891.2.a.k 3
9.d odd 6 1 99.2.e.d 6
9.d odd 6 1 891.2.a.l 3
33.d even 2 1 1089.2.e.h 6
99.g even 6 1 1089.2.e.h 6
99.g even 6 1 9801.2.a.be 3
99.h odd 6 1 9801.2.a.bd 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
99.2.e.d 6 3.b odd 2 1
99.2.e.d 6 9.d odd 6 1
297.2.e.d 6 1.a even 1 1 trivial
297.2.e.d 6 9.c even 3 1 inner
891.2.a.k 3 9.c even 3 1
891.2.a.l 3 9.d odd 6 1
1089.2.e.h 6 33.d even 2 1
1089.2.e.h 6 99.g even 6 1
9801.2.a.bd 3 99.h odd 6 1
9801.2.a.be 3 99.g even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} + 3T_{2}^{4} - 2T_{2}^{3} + 9T_{2}^{2} - 3T_{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(297, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + 3 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} - 3 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{6} - 3 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( (T^{2} + T + 1)^{3} \) Copy content Toggle raw display
$13$ \( T^{6} - 9 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$17$ \( (T^{3} - 3 T^{2} - 6 T - 1)^{2} \) Copy content Toggle raw display
$19$ \( (T^{3} + 9 T^{2} + 18 T - 9)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + 6 T^{5} + \cdots + 361 \) Copy content Toggle raw display
$29$ \( T^{6} + 6 T^{5} + \cdots + 45369 \) Copy content Toggle raw display
$31$ \( T^{6} - 9 T^{5} + \cdots + 361 \) Copy content Toggle raw display
$37$ \( (T^{3} + 12 T^{2} + 27 T - 3)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} + 6 T^{5} + \cdots + 218089 \) Copy content Toggle raw display
$43$ \( T^{6} + 3 T^{5} + \cdots + 294849 \) Copy content Toggle raw display
$47$ \( T^{6} - 12 T^{5} + \cdots + 32041 \) Copy content Toggle raw display
$53$ \( (T^{3} + 3 T^{2} - 126 T - 57)^{2} \) Copy content Toggle raw display
$59$ \( T^{6} - 21 T^{5} + \cdots + 218089 \) Copy content Toggle raw display
$61$ \( T^{6} - 21 T^{5} + \cdots + 103041 \) Copy content Toggle raw display
$67$ \( T^{6} + 3 T^{5} + \cdots + 332929 \) Copy content Toggle raw display
$71$ \( (T^{3} + 12 T^{2} + \cdots - 111)^{2} \) Copy content Toggle raw display
$73$ \( (T^{3} + 6 T^{2} + \cdots - 703)^{2} \) Copy content Toggle raw display
$79$ \( T^{6} - 9 T^{5} + \cdots + 361 \) Copy content Toggle raw display
$83$ \( T^{6} + 27 T^{4} + \cdots + 729 \) Copy content Toggle raw display
$89$ \( (T^{3} - 12 T^{2} + \cdots + 408)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} - 3 T^{5} + \cdots + 516961 \) Copy content Toggle raw display
show more
show less