L(s) = 1 | + (0.766 + 1.32i)2-s + (−0.173 + 0.300i)4-s + (−0.266 + 0.460i)5-s + (1.43 + 2.49i)7-s + 2.53·8-s − 0.815·10-s + (−0.5 − 0.866i)11-s + (−0.0320 + 0.0555i)13-s + (−2.20 + 3.82i)14-s + (2.28 + 3.96i)16-s − 1.22·17-s + 0.411·19-s + (−0.0923 − 0.160i)20-s + (0.766 − 1.32i)22-s + (−2.11 + 3.66i)23-s + ⋯ |
L(s) = 1 | + (0.541 + 0.938i)2-s + (−0.0868 + 0.150i)4-s + (−0.118 + 0.206i)5-s + (0.544 + 0.942i)7-s + 0.895·8-s − 0.257·10-s + (−0.150 − 0.261i)11-s + (−0.00889 + 0.0154i)13-s + (−0.589 + 1.02i)14-s + (0.571 + 0.990i)16-s − 0.297·17-s + 0.0943·19-s + (−0.0206 − 0.0357i)20-s + (0.163 − 0.282i)22-s + (−0.440 + 0.763i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 297 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.173 - 0.984i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 297 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.173 - 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.41991 + 1.19144i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.41991 + 1.19144i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 + (0.5 + 0.866i)T \) |
good | 2 | \( 1 + (-0.766 - 1.32i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (0.266 - 0.460i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (-1.43 - 2.49i)T + (-3.5 + 6.06i)T^{2} \) |
| 13 | \( 1 + (0.0320 - 0.0555i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 1.22T + 17T^{2} \) |
| 19 | \( 1 - 0.411T + 19T^{2} \) |
| 23 | \( 1 + (2.11 - 3.66i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (4.16 + 7.21i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-3.97 + 6.87i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 8.94T + 37T^{2} \) |
| 41 | \( 1 + (-4.46 + 7.73i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (5.71 + 9.90i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.92 - 3.34i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 0.448T + 53T^{2} \) |
| 59 | \( 1 + (-6.84 + 11.8i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.56 - 4.43i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (4.92 - 8.52i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 4.49T + 71T^{2} \) |
| 73 | \( 1 + 8.96T + 73T^{2} \) |
| 79 | \( 1 + (-1.32 - 2.29i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-2.81 - 4.88i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 7.97T + 89T^{2} \) |
| 97 | \( 1 + (-4.95 - 8.57i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.91215441701222008215106122830, −11.20347483502850657081615142587, −10.11211667131774949839845447804, −8.887656582951488025830620453225, −7.909542016540627396988374135642, −7.02911022623546907566121726890, −5.83925959937992546147708300809, −5.26960797486394717916836218389, −3.92940872116791623355149130334, −2.10604677286554140475546673027,
1.47591518981389844238561761748, 3.01656996969358622702331947137, 4.26367213984918615633490373655, 4.95785147103169844779059838351, 6.74498004204457063246582503206, 7.68897565613809539555358448079, 8.684295828914646412947464059101, 10.21090211165993046843035163177, 10.66939620380039898416296392773, 11.61822489770083628129577485855