L(s) = 1 | + (0.766 + 1.32i)2-s + (−0.173 + 0.300i)4-s + (−0.266 + 0.460i)5-s + (1.43 + 2.49i)7-s + 2.53·8-s − 0.815·10-s + (−0.5 − 0.866i)11-s + (−0.0320 + 0.0555i)13-s + (−2.20 + 3.82i)14-s + (2.28 + 3.96i)16-s − 1.22·17-s + 0.411·19-s + (−0.0923 − 0.160i)20-s + (0.766 − 1.32i)22-s + (−2.11 + 3.66i)23-s + ⋯ |
L(s) = 1 | + (0.541 + 0.938i)2-s + (−0.0868 + 0.150i)4-s + (−0.118 + 0.206i)5-s + (0.544 + 0.942i)7-s + 0.895·8-s − 0.257·10-s + (−0.150 − 0.261i)11-s + (−0.00889 + 0.0154i)13-s + (−0.589 + 1.02i)14-s + (0.571 + 0.990i)16-s − 0.297·17-s + 0.0943·19-s + (−0.0206 − 0.0357i)20-s + (0.163 − 0.282i)22-s + (−0.440 + 0.763i)23-s + ⋯ |
Λ(s)=(=(297s/2ΓC(s)L(s)(0.173−0.984i)Λ(2−s)
Λ(s)=(=(297s/2ΓC(s+1/2)L(s)(0.173−0.984i)Λ(1−s)
Degree: |
2 |
Conductor: |
297
= 33⋅11
|
Sign: |
0.173−0.984i
|
Analytic conductor: |
2.37155 |
Root analytic conductor: |
1.53998 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ297(199,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 297, ( :1/2), 0.173−0.984i)
|
Particular Values
L(1) |
≈ |
1.41991+1.19144i |
L(21) |
≈ |
1.41991+1.19144i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | 1+(0.5+0.866i)T |
good | 2 | 1+(−0.766−1.32i)T+(−1+1.73i)T2 |
| 5 | 1+(0.266−0.460i)T+(−2.5−4.33i)T2 |
| 7 | 1+(−1.43−2.49i)T+(−3.5+6.06i)T2 |
| 13 | 1+(0.0320−0.0555i)T+(−6.5−11.2i)T2 |
| 17 | 1+1.22T+17T2 |
| 19 | 1−0.411T+19T2 |
| 23 | 1+(2.11−3.66i)T+(−11.5−19.9i)T2 |
| 29 | 1+(4.16+7.21i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−3.97+6.87i)T+(−15.5−26.8i)T2 |
| 37 | 1+8.94T+37T2 |
| 41 | 1+(−4.46+7.73i)T+(−20.5−35.5i)T2 |
| 43 | 1+(5.71+9.90i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−1.92−3.34i)T+(−23.5+40.7i)T2 |
| 53 | 1+0.448T+53T2 |
| 59 | 1+(−6.84+11.8i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−2.56−4.43i)T+(−30.5+52.8i)T2 |
| 67 | 1+(4.92−8.52i)T+(−33.5−58.0i)T2 |
| 71 | 1+4.49T+71T2 |
| 73 | 1+8.96T+73T2 |
| 79 | 1+(−1.32−2.29i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−2.81−4.88i)T+(−41.5+71.8i)T2 |
| 89 | 1+7.97T+89T2 |
| 97 | 1+(−4.95−8.57i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.91215441701222008215106122830, −11.20347483502850657081615142587, −10.11211667131774949839845447804, −8.887656582951488025830620453225, −7.909542016540627396988374135642, −7.02911022623546907566121726890, −5.83925959937992546147708300809, −5.26960797486394717916836218389, −3.92940872116791623355149130334, −2.10604677286554140475546673027,
1.47591518981389844238561761748, 3.01656996969358622702331947137, 4.26367213984918615633490373655, 4.95785147103169844779059838351, 6.74498004204457063246582503206, 7.68897565613809539555358448079, 8.684295828914646412947464059101, 10.21090211165993046843035163177, 10.66939620380039898416296392773, 11.61822489770083628129577485855