Properties

Label 99.2.e.d
Level 9999
Weight 22
Character orbit 99.e
Analytic conductor 0.7910.791
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [99,2,Mod(34,99)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(99, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("99.34");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 99=3211 99 = 3^{2} \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 99.e (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.7905189800110.790518980011
Analytic rank: 00
Dimension: 66
Relative dimension: 33 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q(ζ18)\Q(\zeta_{18})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6x3+1 x^{6} - x^{3} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 3 3
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β5β4++β2)q2+(β4+β2)q3+β5q4+(β5β3+β2+1)q5+(β5+β4+2β3+1)q6++(β52β4++2β2)q99+O(q100) q + (\beta_{5} - \beta_{4} + \cdots + \beta_{2}) q^{2} + (\beta_{4} + \beta_{2}) q^{3} + \beta_{5} q^{4} + (\beta_{5} - \beta_{3} + \beta_{2} + \cdots - 1) q^{5} + ( - \beta_{5} + \beta_{4} + 2 \beta_{3} + \cdots - 1) q^{6}+ \cdots + (\beta_{5} - 2 \beta_{4} + \cdots + 2 \beta_{2}) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q3q59q6+3q76q812q10+3q11+9q12+9q13+3q14+6q166q17+9q1818q193q20+9q21+6q239q24+6q25+24q26++24q98+O(q100) 6 q - 3 q^{5} - 9 q^{6} + 3 q^{7} - 6 q^{8} - 12 q^{10} + 3 q^{11} + 9 q^{12} + 9 q^{13} + 3 q^{14} + 6 q^{16} - 6 q^{17} + 9 q^{18} - 18 q^{19} - 3 q^{20} + 9 q^{21} + 6 q^{23} - 9 q^{24} + 6 q^{25} + 24 q^{26}+ \cdots + 24 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== ζ183 \zeta_{18}^{3} Copy content Toggle raw display
β2\beta_{2}== ζ185+ζ18 \zeta_{18}^{5} + \zeta_{18} Copy content Toggle raw display
β3\beta_{3}== ζ184+ζ182+ζ18 -\zeta_{18}^{4} + \zeta_{18}^{2} + \zeta_{18} Copy content Toggle raw display
β4\beta_{4}== ζ185+ζ184 -\zeta_{18}^{5} + \zeta_{18}^{4} Copy content Toggle raw display
β5\beta_{5}== ζ185ζ184+ζ18 -\zeta_{18}^{5} - \zeta_{18}^{4} + \zeta_{18} Copy content Toggle raw display
ζ18\zeta_{18}== (β5+β4+2β2)/3 ( \beta_{5} + \beta_{4} + 2\beta_{2} ) / 3 Copy content Toggle raw display
ζ182\zeta_{18}^{2}== (2β5+β4+3β3β2)/3 ( -2\beta_{5} + \beta_{4} + 3\beta_{3} - \beta_{2} ) / 3 Copy content Toggle raw display
ζ183\zeta_{18}^{3}== β1 \beta_1 Copy content Toggle raw display
ζ184\zeta_{18}^{4}== (β5+2β4+β2)/3 ( -\beta_{5} + 2\beta_{4} + \beta_{2} ) / 3 Copy content Toggle raw display
ζ185\zeta_{18}^{5}== (β5β4+β2)/3 ( -\beta_{5} - \beta_{4} + \beta_{2} ) / 3 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/99Z)×\left(\mathbb{Z}/99\mathbb{Z}\right)^\times.

nn 4646 5656
χ(n)\chi(n) 11 1+β1-1 + \beta_{1}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
34.1
−0.173648 + 0.984808i
0.939693 0.342020i
−0.766044 0.642788i
−0.173648 0.984808i
0.939693 + 0.342020i
−0.766044 + 0.642788i
−0.766044 + 1.32683i 0.592396 + 1.62760i −0.173648 0.300767i 0.266044 + 0.460802i −2.61334 0.460802i 1.43969 2.49362i −2.53209 −2.29813 + 1.92836i −0.815207
34.2 −0.173648 + 0.300767i 1.11334 1.32683i 0.939693 + 1.62760i −0.326352 0.565258i 0.205737 + 0.565258i −0.266044 + 0.460802i −1.34730 −0.520945 2.95442i 0.226682
34.3 0.939693 1.62760i −1.70574 0.300767i −0.766044 1.32683i −1.43969 2.49362i −2.09240 + 2.49362i 0.326352 0.565258i 0.879385 2.81908 + 1.02606i −5.41147
67.1 −0.766044 1.32683i 0.592396 1.62760i −0.173648 + 0.300767i 0.266044 0.460802i −2.61334 + 0.460802i 1.43969 + 2.49362i −2.53209 −2.29813 1.92836i −0.815207
67.2 −0.173648 0.300767i 1.11334 + 1.32683i 0.939693 1.62760i −0.326352 + 0.565258i 0.205737 0.565258i −0.266044 0.460802i −1.34730 −0.520945 + 2.95442i 0.226682
67.3 0.939693 + 1.62760i −1.70574 + 0.300767i −0.766044 + 1.32683i −1.43969 + 2.49362i −2.09240 2.49362i 0.326352 + 0.565258i 0.879385 2.81908 1.02606i −5.41147
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 34.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 99.2.e.d 6
3.b odd 2 1 297.2.e.d 6
9.c even 3 1 inner 99.2.e.d 6
9.c even 3 1 891.2.a.l 3
9.d odd 6 1 297.2.e.d 6
9.d odd 6 1 891.2.a.k 3
11.b odd 2 1 1089.2.e.h 6
99.g even 6 1 9801.2.a.bd 3
99.h odd 6 1 1089.2.e.h 6
99.h odd 6 1 9801.2.a.be 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
99.2.e.d 6 1.a even 1 1 trivial
99.2.e.d 6 9.c even 3 1 inner
297.2.e.d 6 3.b odd 2 1
297.2.e.d 6 9.d odd 6 1
891.2.a.k 3 9.d odd 6 1
891.2.a.l 3 9.c even 3 1
1089.2.e.h 6 11.b odd 2 1
1089.2.e.h 6 99.h odd 6 1
9801.2.a.bd 3 99.g even 6 1
9801.2.a.be 3 99.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T26+3T24+2T23+9T22+3T2+1 T_{2}^{6} + 3T_{2}^{4} + 2T_{2}^{3} + 9T_{2}^{2} + 3T_{2} + 1 acting on S2new(99,[χ])S_{2}^{\mathrm{new}}(99, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6+3T4++1 T^{6} + 3 T^{4} + \cdots + 1 Copy content Toggle raw display
33 T6+9T3+27 T^{6} + 9T^{3} + 27 Copy content Toggle raw display
55 T6+3T5++1 T^{6} + 3 T^{5} + \cdots + 1 Copy content Toggle raw display
77 T63T5++1 T^{6} - 3 T^{5} + \cdots + 1 Copy content Toggle raw display
1111 (T2T+1)3 (T^{2} - T + 1)^{3} Copy content Toggle raw display
1313 T69T5++1 T^{6} - 9 T^{5} + \cdots + 1 Copy content Toggle raw display
1717 (T3+3T26T+1)2 (T^{3} + 3 T^{2} - 6 T + 1)^{2} Copy content Toggle raw display
1919 (T3+9T2+18T9)2 (T^{3} + 9 T^{2} + 18 T - 9)^{2} Copy content Toggle raw display
2323 T66T5++361 T^{6} - 6 T^{5} + \cdots + 361 Copy content Toggle raw display
2929 T66T5++45369 T^{6} - 6 T^{5} + \cdots + 45369 Copy content Toggle raw display
3131 T69T5++361 T^{6} - 9 T^{5} + \cdots + 361 Copy content Toggle raw display
3737 (T3+12T2+27T3)2 (T^{3} + 12 T^{2} + 27 T - 3)^{2} Copy content Toggle raw display
4141 T66T5++218089 T^{6} - 6 T^{5} + \cdots + 218089 Copy content Toggle raw display
4343 T6+3T5++294849 T^{6} + 3 T^{5} + \cdots + 294849 Copy content Toggle raw display
4747 T6+12T5++32041 T^{6} + 12 T^{5} + \cdots + 32041 Copy content Toggle raw display
5353 (T33T2126T+57)2 (T^{3} - 3 T^{2} - 126 T + 57)^{2} Copy content Toggle raw display
5959 T6+21T5++218089 T^{6} + 21 T^{5} + \cdots + 218089 Copy content Toggle raw display
6161 T621T5++103041 T^{6} - 21 T^{5} + \cdots + 103041 Copy content Toggle raw display
6767 T6+3T5++332929 T^{6} + 3 T^{5} + \cdots + 332929 Copy content Toggle raw display
7171 (T312T2++111)2 (T^{3} - 12 T^{2} + \cdots + 111)^{2} Copy content Toggle raw display
7373 (T3+6T2+703)2 (T^{3} + 6 T^{2} + \cdots - 703)^{2} Copy content Toggle raw display
7979 T69T5++361 T^{6} - 9 T^{5} + \cdots + 361 Copy content Toggle raw display
8383 T6+27T4++729 T^{6} + 27 T^{4} + \cdots + 729 Copy content Toggle raw display
8989 (T3+12T2+408)2 (T^{3} + 12 T^{2} + \cdots - 408)^{2} Copy content Toggle raw display
9797 T63T5++516961 T^{6} - 3 T^{5} + \cdots + 516961 Copy content Toggle raw display
show more
show less