L(s) = 1 | + (0.939 − 1.62i)2-s + (−1.70 − 0.300i)3-s + (−0.766 − 1.32i)4-s + (−1.43 − 2.49i)5-s + (−2.09 + 2.49i)6-s + (0.326 − 0.565i)7-s + 0.879·8-s + (2.81 + 1.02i)9-s − 5.41·10-s + (0.5 − 0.866i)11-s + (0.907 + 2.49i)12-s + (3.37 + 5.85i)13-s + (−0.613 − 1.06i)14-s + (1.70 + 4.68i)15-s + (2.35 − 4.08i)16-s + 0.184·17-s + ⋯ |
L(s) = 1 | + (0.664 − 1.15i)2-s + (−0.984 − 0.173i)3-s + (−0.383 − 0.663i)4-s + (−0.643 − 1.11i)5-s + (−0.854 + 1.01i)6-s + (0.123 − 0.213i)7-s + 0.310·8-s + (0.939 + 0.342i)9-s − 1.71·10-s + (0.150 − 0.261i)11-s + (0.262 + 0.719i)12-s + (0.937 + 1.62i)13-s + (−0.163 − 0.283i)14-s + (0.440 + 1.21i)15-s + (0.589 − 1.02i)16-s + 0.0448·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.500 + 0.866i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.500 + 0.866i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.518567 - 0.898185i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.518567 - 0.898185i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.70 + 0.300i)T \) |
| 11 | \( 1 + (-0.5 + 0.866i)T \) |
good | 2 | \( 1 + (-0.939 + 1.62i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (1.43 + 2.49i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-0.326 + 0.565i)T + (-3.5 - 6.06i)T^{2} \) |
| 13 | \( 1 + (-3.37 - 5.85i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 0.184T + 17T^{2} \) |
| 19 | \( 1 + 5.22T + 19T^{2} \) |
| 23 | \( 1 + (-1.59 - 2.75i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.01 + 3.48i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (0.553 + 0.957i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 0.106T + 37T^{2} \) |
| 41 | \( 1 + (-2.80 - 4.86i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1.92 - 3.34i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (6.00 - 10.3i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 10.0T + 53T^{2} \) |
| 59 | \( 1 + (5.27 + 9.14i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.67 + 6.36i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.90 - 10.2i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 2.47T + 71T^{2} \) |
| 73 | \( 1 - 10.4T + 73T^{2} \) |
| 79 | \( 1 + (-0.733 + 1.27i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-0.520 + 0.902i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 3.01T + 89T^{2} \) |
| 97 | \( 1 + (-2.86 + 4.97i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.06057713531468769412059313647, −12.43760275348914562073493384079, −11.40381364776942494347732484418, −11.08948993537939147894747004982, −9.499955869669467671586087336823, −8.033488627298117695249270513392, −6.39750311496769766351948640263, −4.72213850669722601074317444081, −4.07484953111814333481348863115, −1.43255679275398639033860616590,
3.73666614660862836087454104850, 5.17843851421376892230602417199, 6.28886996829218224912112058240, 7.07013772828168894407102789621, 8.266052948927218701638265756799, 10.51179848334022285439567020510, 10.86059941714504891459072775709, 12.31907917792042465022701315280, 13.29674243050505664512120908319, 14.75648955819797762141413907904