Properties

Label 2-99-9.7-c1-0-8
Degree 22
Conductor 9999
Sign 0.500+0.866i-0.500 + 0.866i
Analytic cond. 0.7905180.790518
Root an. cond. 0.8891110.889111
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.939 − 1.62i)2-s + (−1.70 − 0.300i)3-s + (−0.766 − 1.32i)4-s + (−1.43 − 2.49i)5-s + (−2.09 + 2.49i)6-s + (0.326 − 0.565i)7-s + 0.879·8-s + (2.81 + 1.02i)9-s − 5.41·10-s + (0.5 − 0.866i)11-s + (0.907 + 2.49i)12-s + (3.37 + 5.85i)13-s + (−0.613 − 1.06i)14-s + (1.70 + 4.68i)15-s + (2.35 − 4.08i)16-s + 0.184·17-s + ⋯
L(s)  = 1  + (0.664 − 1.15i)2-s + (−0.984 − 0.173i)3-s + (−0.383 − 0.663i)4-s + (−0.643 − 1.11i)5-s + (−0.854 + 1.01i)6-s + (0.123 − 0.213i)7-s + 0.310·8-s + (0.939 + 0.342i)9-s − 1.71·10-s + (0.150 − 0.261i)11-s + (0.262 + 0.719i)12-s + (0.937 + 1.62i)13-s + (−0.163 − 0.283i)14-s + (0.440 + 1.21i)15-s + (0.589 − 1.02i)16-s + 0.0448·17-s + ⋯

Functional equation

Λ(s)=(99s/2ΓC(s)L(s)=((0.500+0.866i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.500 + 0.866i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(99s/2ΓC(s+1/2)L(s)=((0.500+0.866i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.500 + 0.866i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 9999    =    32113^{2} \cdot 11
Sign: 0.500+0.866i-0.500 + 0.866i
Analytic conductor: 0.7905180.790518
Root analytic conductor: 0.8891110.889111
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ99(34,)\chi_{99} (34, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 99, ( :1/2), 0.500+0.866i)(2,\ 99,\ (\ :1/2),\ -0.500 + 0.866i)

Particular Values

L(1)L(1) \approx 0.5185670.898185i0.518567 - 0.898185i
L(12)L(\frac12) \approx 0.5185670.898185i0.518567 - 0.898185i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1+(1.70+0.300i)T 1 + (1.70 + 0.300i)T
11 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
good2 1+(0.939+1.62i)T+(11.73i)T2 1 + (-0.939 + 1.62i)T + (-1 - 1.73i)T^{2}
5 1+(1.43+2.49i)T+(2.5+4.33i)T2 1 + (1.43 + 2.49i)T + (-2.5 + 4.33i)T^{2}
7 1+(0.326+0.565i)T+(3.56.06i)T2 1 + (-0.326 + 0.565i)T + (-3.5 - 6.06i)T^{2}
13 1+(3.375.85i)T+(6.5+11.2i)T2 1 + (-3.37 - 5.85i)T + (-6.5 + 11.2i)T^{2}
17 10.184T+17T2 1 - 0.184T + 17T^{2}
19 1+5.22T+19T2 1 + 5.22T + 19T^{2}
23 1+(1.592.75i)T+(11.5+19.9i)T2 1 + (-1.59 - 2.75i)T + (-11.5 + 19.9i)T^{2}
29 1+(2.01+3.48i)T+(14.525.1i)T2 1 + (-2.01 + 3.48i)T + (-14.5 - 25.1i)T^{2}
31 1+(0.553+0.957i)T+(15.5+26.8i)T2 1 + (0.553 + 0.957i)T + (-15.5 + 26.8i)T^{2}
37 10.106T+37T2 1 - 0.106T + 37T^{2}
41 1+(2.804.86i)T+(20.5+35.5i)T2 1 + (-2.80 - 4.86i)T + (-20.5 + 35.5i)T^{2}
43 1+(1.923.34i)T+(21.537.2i)T2 1 + (1.92 - 3.34i)T + (-21.5 - 37.2i)T^{2}
47 1+(6.0010.3i)T+(23.540.7i)T2 1 + (6.00 - 10.3i)T + (-23.5 - 40.7i)T^{2}
53 1+10.0T+53T2 1 + 10.0T + 53T^{2}
59 1+(5.27+9.14i)T+(29.5+51.0i)T2 1 + (5.27 + 9.14i)T + (-29.5 + 51.0i)T^{2}
61 1+(3.67+6.36i)T+(30.552.8i)T2 1 + (-3.67 + 6.36i)T + (-30.5 - 52.8i)T^{2}
67 1+(5.9010.2i)T+(33.5+58.0i)T2 1 + (-5.90 - 10.2i)T + (-33.5 + 58.0i)T^{2}
71 1+2.47T+71T2 1 + 2.47T + 71T^{2}
73 110.4T+73T2 1 - 10.4T + 73T^{2}
79 1+(0.733+1.27i)T+(39.568.4i)T2 1 + (-0.733 + 1.27i)T + (-39.5 - 68.4i)T^{2}
83 1+(0.520+0.902i)T+(41.571.8i)T2 1 + (-0.520 + 0.902i)T + (-41.5 - 71.8i)T^{2}
89 1+3.01T+89T2 1 + 3.01T + 89T^{2}
97 1+(2.86+4.97i)T+(48.584.0i)T2 1 + (-2.86 + 4.97i)T + (-48.5 - 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−13.06057713531468769412059313647, −12.43760275348914562073493384079, −11.40381364776942494347732484418, −11.08948993537939147894747004982, −9.499955869669467671586087336823, −8.033488627298117695249270513392, −6.39750311496769766351948640263, −4.72213850669722601074317444081, −4.07484953111814333481348863115, −1.43255679275398639033860616590, 3.73666614660862836087454104850, 5.17843851421376892230602417199, 6.28886996829218224912112058240, 7.07013772828168894407102789621, 8.266052948927218701638265756799, 10.51179848334022285439567020510, 10.86059941714504891459072775709, 12.31907917792042465022701315280, 13.29674243050505664512120908319, 14.75648955819797762141413907904

Graph of the ZZ-function along the critical line