L(s) = 1 | + (0.760 − 2.33i)2-s + (−3.27 − 2.38i)4-s + (0.305 + 0.941i)5-s + (−3.49 − 2.54i)7-s + (−4.08 + 2.96i)8-s + 2.43·10-s + (−2.79 − 1.79i)11-s + (1.11 − 3.44i)13-s + (−8.60 + 6.25i)14-s + (1.33 + 4.11i)16-s + (0.816 + 2.51i)17-s + (3.09 − 2.24i)19-s + (1.23 − 3.81i)20-s + (−6.31 + 5.16i)22-s + 3.45·23-s + ⋯ |
L(s) = 1 | + (0.537 − 1.65i)2-s + (−1.63 − 1.19i)4-s + (0.136 + 0.420i)5-s + (−1.32 − 0.960i)7-s + (−1.44 + 1.04i)8-s + 0.770·10-s + (−0.841 − 0.540i)11-s + (0.310 − 0.954i)13-s + (−2.29 + 1.67i)14-s + (0.333 + 1.02i)16-s + (0.197 + 0.609i)17-s + (0.710 − 0.516i)19-s + (0.277 − 0.853i)20-s + (−1.34 + 1.10i)22-s + 0.719·23-s + ⋯ |
Λ(s)=(=(297s/2ΓC(s)L(s)(−0.977−0.209i)Λ(2−s)
Λ(s)=(=(297s/2ΓC(s+1/2)L(s)(−0.977−0.209i)Λ(1−s)
Degree: |
2 |
Conductor: |
297
= 33⋅11
|
Sign: |
−0.977−0.209i
|
Analytic conductor: |
2.37155 |
Root analytic conductor: |
1.53998 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ297(163,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 297, ( :1/2), −0.977−0.209i)
|
Particular Values
L(1) |
≈ |
0.128756+1.21778i |
L(21) |
≈ |
0.128756+1.21778i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | 1+(2.79+1.79i)T |
good | 2 | 1+(−0.760+2.33i)T+(−1.61−1.17i)T2 |
| 5 | 1+(−0.305−0.941i)T+(−4.04+2.93i)T2 |
| 7 | 1+(3.49+2.54i)T+(2.16+6.65i)T2 |
| 13 | 1+(−1.11+3.44i)T+(−10.5−7.64i)T2 |
| 17 | 1+(−0.816−2.51i)T+(−13.7+9.99i)T2 |
| 19 | 1+(−3.09+2.24i)T+(5.87−18.0i)T2 |
| 23 | 1−3.45T+23T2 |
| 29 | 1+(−8.43−6.12i)T+(8.96+27.5i)T2 |
| 31 | 1+(0.521−1.60i)T+(−25.0−18.2i)T2 |
| 37 | 1+(2.61+1.90i)T+(11.4+35.1i)T2 |
| 41 | 1+(−9.63+6.99i)T+(12.6−38.9i)T2 |
| 43 | 1+2.12T+43T2 |
| 47 | 1+(3.47−2.52i)T+(14.5−44.6i)T2 |
| 53 | 1+(2.93−9.01i)T+(−42.8−31.1i)T2 |
| 59 | 1+(5.23+3.80i)T+(18.2+56.1i)T2 |
| 61 | 1+(1.48+4.57i)T+(−49.3+35.8i)T2 |
| 67 | 1−0.854T+67T2 |
| 71 | 1+(1.16+3.59i)T+(−57.4+41.7i)T2 |
| 73 | 1+(9.22+6.70i)T+(22.5+69.4i)T2 |
| 79 | 1+(−1.89+5.84i)T+(−63.9−46.4i)T2 |
| 83 | 1+(−1.03−3.19i)T+(−67.1+48.7i)T2 |
| 89 | 1+13.2T+89T2 |
| 97 | 1+(0.114−0.353i)T+(−78.4−57.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.88360989669789838806429531717, −10.64141901561914141308348605577, −9.935500547845237537912878256927, −8.824748417203406506806681245103, −7.29770387097364163701267114085, −6.02662723674304731980861616502, −4.77166742951789992299972012913, −3.29941997388607422360805962274, −2.97993429208041549795589173535, −0.789618503585429600531718733264,
2.97923826374449544766265962161, 4.54549397969033710184319591346, 5.47354476888599995590004367095, 6.33730576274570055065583844582, 7.15792048768301588599855616355, 8.285222582057597562692508722402, 9.185840235995270712607733231044, 9.885856950116507332473529169056, 11.72201089996568427089943781967, 12.70810338537380037424880259988