Properties

Label 297.2.f.b
Level $297$
Weight $2$
Character orbit 297.f
Analytic conductor $2.372$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [297,2,Mod(82,297)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(297, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("297.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.f (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 9x^{14} + 51x^{12} - 249x^{10} + 1476x^{8} - 2875x^{6} + 2335x^{4} + 125x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{12} q^{2} + (\beta_{9} - \beta_{7} + \cdots - \beta_{2}) q^{4} + ( - \beta_{15} + \beta_{13} + \cdots + \beta_1) q^{5} + (\beta_{6} - \beta_{5} + \beta_{3} + \cdots + 1) q^{7} + ( - \beta_{15} - 2 \beta_{14} + \cdots - 2 \beta_1) q^{8}+ \cdots + ( - \beta_{15} + 10 \beta_{13} + \cdots + 7 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 10 q^{4} + 12 q^{10} - 10 q^{16} - 2 q^{19} - 36 q^{22} + 32 q^{25} + 42 q^{28} - 26 q^{31} - 48 q^{34} - 24 q^{37} - 20 q^{40} + 24 q^{43} - 16 q^{46} + 24 q^{49} - 40 q^{52} - 16 q^{55} + 106 q^{58}+ \cdots + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} - 9x^{14} + 51x^{12} - 249x^{10} + 1476x^{8} - 2875x^{6} + 2335x^{4} + 125x^{2} + 25 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 16594091 \nu^{14} + 132889182 \nu^{12} - 669375495 \nu^{10} + 3344289682 \nu^{8} + \cdots + 109896768237 ) / 48030072872 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 399459369 \nu^{14} - 3872461014 \nu^{12} + 22604705541 \nu^{10} - 111418189614 \nu^{8} + \cdots - 163815397855 ) / 240150364360 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 641538645 \nu^{14} - 5845087188 \nu^{12} + 33077583727 \nu^{10} - 161239139198 \nu^{8} + \cdots + 220551349875 ) / 240150364360 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 420560697 \nu^{14} - 4175189607 \nu^{12} + 24562062708 \nu^{10} - 121476379662 \nu^{8} + \cdots - 186816081040 ) / 120075182180 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 1070034741 \nu^{14} - 9471203848 \nu^{12} + 53263591527 \nu^{10} - 259312649798 \nu^{8} + \cdots + 118775784515 ) / 240150364360 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 724570675 \nu^{14} + 6672080139 \nu^{12} - 37857976976 \nu^{10} + 184639030474 \nu^{8} + \cdots - 251290182000 ) / 120075182180 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 399459369 \nu^{15} - 3872461014 \nu^{13} + 22604705541 \nu^{11} - 111418189614 \nu^{9} + \cdots - 163815397855 \nu ) / 240150364360 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 921163875 \nu^{14} - 8325322917 \nu^{12} + 47647278148 \nu^{10} - 233617980722 \nu^{8} + \cdots - 28361391040 ) / 120075182180 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 827955465 \nu^{15} - 7498577674 \nu^{13} + 42790713341 \nu^{11} - 209491700214 \nu^{9} + \cdots - 25440598855 \nu ) / 240150364360 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 1070034741 \nu^{15} - 9471203848 \nu^{13} + 53263591527 \nu^{11} - 259312649798 \nu^{9} + \cdots + 118775784515 \nu ) / 240150364360 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 914980841 \nu^{15} + 8770447689 \nu^{13} - 51196668716 \nu^{11} + 253062739159 \nu^{9} + \cdots + 962789857750 \nu ) / 150093977725 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 12695929441 \nu^{15} + 111086725194 \nu^{13} - 620796945061 \nu^{11} + \cdots - 5798667404425 \nu ) / 1200751821800 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 13576283373 \nu^{15} + 121399649892 \nu^{13} - 682891277823 \nu^{11} + \cdots - 8793919655675 \nu ) / 1200751821800 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 24923473777 \nu^{15} - 228729353598 \nu^{13} + 1310185729437 \nu^{11} + \cdots - 3637970480775 \nu ) / 1200751821800 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{9} + 3\beta_{6} - 4\beta_{4} + 3\beta_{3} + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -2\beta_{15} - \beta_{14} - 2\beta_{12} - \beta_{11} + 7\beta_{10} - \beta_{8} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -\beta_{9} - 6\beta_{7} + 6\beta_{6} + \beta_{5} - 22\beta_{4} + 6 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -8\beta_{15} - 14\beta_{14} + \beta_{13} - 15\beta_{12} - 34\beta_{11} + 43\beta_{10} - 42\beta_{8} - 33\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -9\beta_{9} + 39\beta_{6} + 43\beta_{5} - 39\beta_{4} - 89\beta_{3} + 9\beta_{2} \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -9\beta_{15} - 52\beta_{14} + 52\beta_{13} - 43\beta_{12} + 66\beta_{10} - 205\beta_{8} - 14\beta_1 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( -191\beta_{9} + 191\beta_{7} + 501\beta_{6} + 257\beta_{5} - 256\beta_{3} + 257\beta_{2} - 256 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 66\beta_{15} - 66\beta_{14} + 514\beta_{13} + 257\beta_{12} + 1074\beta_{11} + 60\beta_{8} + 60\beta_1 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 454\beta_{7} + 454\beta_{5} + 1664\beta_{4} - 1664\beta_{3} + 1528\beta_{2} - 4503 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 1982 \beta_{15} + 454 \beta_{14} + 1982 \beta_{13} + 3510 \beta_{12} + 3026 \beta_{11} + \cdots - 4079 \beta_1 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 6061\beta_{9} + 3026\beta_{7} - 16171\beta_{6} + 26862\beta_{4} - 16171\beta_{3} + 3026\beta_{2} - 26862 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 18174 \beta_{15} + 12113 \beta_{14} + 3026 \beta_{13} + 24226 \beta_{12} + 19769 \beta_{11} + \cdots + 3026 \beta_1 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( 19769\beta_{9} + 34354\beta_{7} - 68004\beta_{6} - 19769\beta_{5} + 160548\beta_{4} - 68004 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( 73892 \beta_{15} + 108246 \beta_{14} - 19769 \beta_{13} + 128015 \beta_{12} + 195606 \beta_{11} + \cdots + 175837 \beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(1\) \(\beta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
82.1
−1.18970 0.386556i
−2.33991 0.760284i
2.33991 + 0.760284i
1.18970 + 0.386556i
−0.185814 0.255752i
−1.35089 1.85934i
1.35089 + 1.85934i
0.185814 + 0.255752i
−1.18970 + 0.386556i
−2.33991 + 0.760284i
2.33991 0.760284i
1.18970 0.386556i
−0.185814 + 0.255752i
−1.35089 + 1.85934i
1.35089 1.85934i
0.185814 0.255752i
−0.760284 2.33991i 0 −3.27913 + 2.38243i −0.305860 + 0.941339i 0 −3.49672 + 2.54052i 4.08684 + 2.96926i 0 2.43519
82.2 −0.386556 1.18970i 0 0.352078 0.255800i 0.507211 1.56103i 0 2.37869 1.72822i −2.46446 1.79053i 0 −2.05323
82.3 0.386556 + 1.18970i 0 0.352078 0.255800i −0.507211 + 1.56103i 0 2.37869 1.72822i 2.46446 + 1.79053i 0 −2.05323
82.4 0.760284 + 2.33991i 0 −3.27913 + 2.38243i 0.305860 0.941339i 0 −3.49672 + 2.54052i −4.08684 2.96926i 0 2.43519
136.1 −1.85934 1.35089i 0 1.01420 + 3.12140i −1.37287 + 0.997447i 0 0.0641710 + 0.197498i 0.910502 2.80224i 0 3.90006
136.2 −0.255752 0.185814i 0 −0.587152 1.80707i 3.28092 2.38373i 0 1.05386 + 3.24346i −0.380991 + 1.17257i 0 −1.28203
136.3 0.255752 + 0.185814i 0 −0.587152 1.80707i −3.28092 + 2.38373i 0 1.05386 + 3.24346i 0.380991 1.17257i 0 −1.28203
136.4 1.85934 + 1.35089i 0 1.01420 + 3.12140i 1.37287 0.997447i 0 0.0641710 + 0.197498i −0.910502 + 2.80224i 0 3.90006
163.1 −0.760284 + 2.33991i 0 −3.27913 2.38243i −0.305860 0.941339i 0 −3.49672 2.54052i 4.08684 2.96926i 0 2.43519
163.2 −0.386556 + 1.18970i 0 0.352078 + 0.255800i 0.507211 + 1.56103i 0 2.37869 + 1.72822i −2.46446 + 1.79053i 0 −2.05323
163.3 0.386556 1.18970i 0 0.352078 + 0.255800i −0.507211 1.56103i 0 2.37869 + 1.72822i 2.46446 1.79053i 0 −2.05323
163.4 0.760284 2.33991i 0 −3.27913 2.38243i 0.305860 + 0.941339i 0 −3.49672 2.54052i −4.08684 + 2.96926i 0 2.43519
190.1 −1.85934 + 1.35089i 0 1.01420 3.12140i −1.37287 0.997447i 0 0.0641710 0.197498i 0.910502 + 2.80224i 0 3.90006
190.2 −0.255752 + 0.185814i 0 −0.587152 + 1.80707i 3.28092 + 2.38373i 0 1.05386 3.24346i −0.380991 1.17257i 0 −1.28203
190.3 0.255752 0.185814i 0 −0.587152 + 1.80707i −3.28092 2.38373i 0 1.05386 3.24346i 0.380991 + 1.17257i 0 −1.28203
190.4 1.85934 1.35089i 0 1.01420 3.12140i 1.37287 + 0.997447i 0 0.0641710 0.197498i −0.910502 2.80224i 0 3.90006
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 82.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
11.c even 5 1 inner
33.h odd 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 297.2.f.b 16
3.b odd 2 1 inner 297.2.f.b 16
9.c even 3 2 891.2.n.h 32
9.d odd 6 2 891.2.n.h 32
11.c even 5 1 inner 297.2.f.b 16
11.c even 5 1 3267.2.a.bj 8
11.d odd 10 1 3267.2.a.bi 8
33.f even 10 1 3267.2.a.bi 8
33.h odd 10 1 inner 297.2.f.b 16
33.h odd 10 1 3267.2.a.bj 8
99.m even 15 2 891.2.n.h 32
99.n odd 30 2 891.2.n.h 32
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
297.2.f.b 16 1.a even 1 1 trivial
297.2.f.b 16 3.b odd 2 1 inner
297.2.f.b 16 11.c even 5 1 inner
297.2.f.b 16 33.h odd 10 1 inner
891.2.n.h 32 9.c even 3 2
891.2.n.h 32 9.d odd 6 2
891.2.n.h 32 99.m even 15 2
891.2.n.h 32 99.n odd 30 2
3267.2.a.bi 8 11.d odd 10 1
3267.2.a.bi 8 33.f even 10 1
3267.2.a.bj 8 11.c even 5 1
3267.2.a.bj 8 33.h odd 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{16} + 9T_{2}^{14} + 51T_{2}^{12} + 249T_{2}^{10} + 1476T_{2}^{8} + 2875T_{2}^{6} + 2335T_{2}^{4} - 125T_{2}^{2} + 25 \) acting on \(S_{2}^{\mathrm{new}}(297, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} + 9 T^{14} + \cdots + 25 \) Copy content Toggle raw display
$3$ \( T^{16} \) Copy content Toggle raw display
$5$ \( T^{16} - 6 T^{14} + \cdots + 15625 \) Copy content Toggle raw display
$7$ \( (T^{8} + T^{6} + 10 T^{5} + \cdots + 81)^{2} \) Copy content Toggle raw display
$11$ \( T^{16} + \cdots + 214358881 \) Copy content Toggle raw display
$13$ \( (T^{4} + 10 T^{2} + \cdots + 25)^{4} \) Copy content Toggle raw display
$17$ \( T^{16} + \cdots + 25665642025 \) Copy content Toggle raw display
$19$ \( (T^{8} + T^{7} + \cdots + 450241)^{2} \) Copy content Toggle raw display
$23$ \( (T^{8} - 42 T^{6} + \cdots + 405)^{2} \) Copy content Toggle raw display
$29$ \( T^{16} - 84 T^{14} + \cdots + 25 \) Copy content Toggle raw display
$31$ \( (T^{8} + 13 T^{7} + \cdots + 44521)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} + 6 T^{3} + 16 T^{2} + \cdots + 16)^{4} \) Copy content Toggle raw display
$41$ \( T^{16} + \cdots + 43\!\cdots\!25 \) Copy content Toggle raw display
$43$ \( (T^{4} - 6 T^{3} - 16 T^{2} + \cdots + 5)^{4} \) Copy content Toggle raw display
$47$ \( T^{16} + \cdots + 980347515625 \) Copy content Toggle raw display
$53$ \( T^{16} + \cdots + 5358972025 \) Copy content Toggle raw display
$59$ \( T^{16} + \cdots + 415257804025 \) Copy content Toggle raw display
$61$ \( (T^{8} + 3 T^{7} + \cdots + 194481)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 5 T - 5)^{8} \) Copy content Toggle raw display
$71$ \( T^{16} + \cdots + 64072265625 \) Copy content Toggle raw display
$73$ \( (T^{8} + 164 T^{6} + \cdots + 14622976)^{2} \) Copy content Toggle raw display
$79$ \( (T^{8} - 32 T^{7} + \cdots + 421201)^{2} \) Copy content Toggle raw display
$83$ \( T^{16} + \cdots + 463495448025 \) Copy content Toggle raw display
$89$ \( (T^{8} - 357 T^{6} + \cdots + 25515405)^{2} \) Copy content Toggle raw display
$97$ \( (T^{8} - 36 T^{7} + \cdots + 160801)^{2} \) Copy content Toggle raw display
show more
show less