Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [891,2,Mod(136,891)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(891, base_ring=CyclotomicField(30))
chi = DirichletCharacter(H, H._module([20, 6]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("891.136");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 891 = 3^{4} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 891.n (of order \(15\), degree \(8\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(7.11467082010\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{15})\) |
Twist minimal: | no (minimal twist has level 297) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{15}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
136.1 | −2.09957 | + | 0.934789i | 0 | 2.19611 | − | 2.43902i | −1.55025 | − | 0.690215i | 0 | −0.203124 | − | 0.0431753i | −0.910502 | + | 2.80224i | 0 | 3.90006 | ||||||||
136.2 | −0.288796 | + | 0.128580i | 0 | −1.27139 | + | 1.41202i | 3.70483 | + | 1.64949i | 0 | −3.33585 | − | 0.709056i | 0.380991 | − | 1.17257i | 0 | −1.28203 | ||||||||
136.3 | 0.288796 | − | 0.128580i | 0 | −1.27139 | + | 1.41202i | −3.70483 | − | 1.64949i | 0 | −3.33585 | − | 0.709056i | −0.380991 | + | 1.17257i | 0 | −1.28203 | ||||||||
136.4 | 2.09957 | − | 0.934789i | 0 | 2.19611 | − | 2.43902i | 1.55025 | + | 0.690215i | 0 | −0.203124 | − | 0.0431753i | 0.910502 | − | 2.80224i | 0 | 3.90006 | ||||||||
190.1 | −2.09957 | − | 0.934789i | 0 | 2.19611 | + | 2.43902i | −1.55025 | + | 0.690215i | 0 | −0.203124 | + | 0.0431753i | −0.910502 | − | 2.80224i | 0 | 3.90006 | ||||||||
190.2 | −0.288796 | − | 0.128580i | 0 | −1.27139 | − | 1.41202i | 3.70483 | − | 1.64949i | 0 | −3.33585 | + | 0.709056i | 0.380991 | + | 1.17257i | 0 | −1.28203 | ||||||||
190.3 | 0.288796 | + | 0.128580i | 0 | −1.27139 | − | 1.41202i | −3.70483 | + | 1.64949i | 0 | −3.33585 | + | 0.709056i | −0.380991 | − | 1.17257i | 0 | −1.28203 | ||||||||
190.4 | 2.09957 | + | 0.934789i | 0 | 2.19611 | + | 2.43902i | 1.55025 | − | 0.690215i | 0 | −0.203124 | + | 0.0431753i | 0.910502 | + | 2.80224i | 0 | 3.90006 | ||||||||
379.1 | −2.40657 | − | 0.511531i | 0 | 3.70281 | + | 1.64860i | −0.968153 | + | 0.205787i | 0 | −0.451792 | − | 4.29851i | −4.08684 | − | 2.96926i | 0 | 2.43519 | ||||||||
379.2 | −1.22359 | − | 0.260081i | 0 | −0.397568 | − | 0.177009i | 1.60550 | − | 0.341260i | 0 | 0.307337 | + | 2.92412i | 2.46446 | + | 1.79053i | 0 | −2.05323 | ||||||||
379.3 | 1.22359 | + | 0.260081i | 0 | −0.397568 | − | 0.177009i | −1.60550 | + | 0.341260i | 0 | 0.307337 | + | 2.92412i | −2.46446 | − | 1.79053i | 0 | −2.05323 | ||||||||
379.4 | 2.40657 | + | 0.511531i | 0 | 3.70281 | + | 1.64860i | 0.968153 | − | 0.205787i | 0 | −0.451792 | − | 4.29851i | 4.08684 | + | 2.96926i | 0 | 2.43519 | ||||||||
433.1 | −0.240234 | + | 2.28568i | 0 | −3.21031 | − | 0.682372i | −0.177381 | − | 1.68766i | 0 | 0.138953 | − | 0.154323i | 0.910502 | − | 2.80224i | 0 | 3.90006 | ||||||||
433.2 | −0.0330442 | + | 0.314395i | 0 | 1.85854 | + | 0.395046i | 0.423909 | + | 4.03322i | 0 | 2.28198 | − | 2.53440i | −0.380991 | + | 1.17257i | 0 | −1.28203 | ||||||||
433.3 | 0.0330442 | − | 0.314395i | 0 | 1.85854 | + | 0.395046i | −0.423909 | − | 4.03322i | 0 | 2.28198 | − | 2.53440i | 0.380991 | − | 1.17257i | 0 | −1.28203 | ||||||||
433.4 | 0.240234 | − | 2.28568i | 0 | −3.21031 | − | 0.682372i | 0.177381 | + | 1.68766i | 0 | 0.138953 | − | 0.154323i | −0.910502 | + | 2.80224i | 0 | 3.90006 | ||||||||
460.1 | −1.64628 | − | 1.82838i | 0 | −0.423677 | + | 4.03102i | −0.662294 | + | 0.735552i | 0 | 3.94852 | − | 1.75799i | 4.08684 | − | 2.96926i | 0 | 2.43519 | ||||||||
460.2 | −0.837031 | − | 0.929617i | 0 | 0.0454900 | − | 0.432808i | 1.09829 | − | 1.21977i | 0 | −2.68603 | + | 1.19590i | −2.46446 | + | 1.79053i | 0 | −2.05323 | ||||||||
460.3 | 0.837031 | + | 0.929617i | 0 | 0.0454900 | − | 0.432808i | −1.09829 | + | 1.21977i | 0 | −2.68603 | + | 1.19590i | 2.46446 | − | 1.79053i | 0 | −2.05323 | ||||||||
460.4 | 1.64628 | + | 1.82838i | 0 | −0.423677 | + | 4.03102i | 0.662294 | − | 0.735552i | 0 | 3.94852 | − | 1.75799i | −4.08684 | + | 2.96926i | 0 | 2.43519 | ||||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
9.c | even | 3 | 1 | inner |
9.d | odd | 6 | 1 | inner |
11.c | even | 5 | 1 | inner |
33.h | odd | 10 | 1 | inner |
99.m | even | 15 | 1 | inner |
99.n | odd | 30 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 891.2.n.h | 32 | |
3.b | odd | 2 | 1 | inner | 891.2.n.h | 32 | |
9.c | even | 3 | 1 | 297.2.f.b | ✓ | 16 | |
9.c | even | 3 | 1 | inner | 891.2.n.h | 32 | |
9.d | odd | 6 | 1 | 297.2.f.b | ✓ | 16 | |
9.d | odd | 6 | 1 | inner | 891.2.n.h | 32 | |
11.c | even | 5 | 1 | inner | 891.2.n.h | 32 | |
33.h | odd | 10 | 1 | inner | 891.2.n.h | 32 | |
99.m | even | 15 | 1 | 297.2.f.b | ✓ | 16 | |
99.m | even | 15 | 1 | inner | 891.2.n.h | 32 | |
99.m | even | 15 | 1 | 3267.2.a.bj | 8 | ||
99.n | odd | 30 | 1 | 297.2.f.b | ✓ | 16 | |
99.n | odd | 30 | 1 | inner | 891.2.n.h | 32 | |
99.n | odd | 30 | 1 | 3267.2.a.bj | 8 | ||
99.o | odd | 30 | 1 | 3267.2.a.bi | 8 | ||
99.p | even | 30 | 1 | 3267.2.a.bi | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
297.2.f.b | ✓ | 16 | 9.c | even | 3 | 1 | |
297.2.f.b | ✓ | 16 | 9.d | odd | 6 | 1 | |
297.2.f.b | ✓ | 16 | 99.m | even | 15 | 1 | |
297.2.f.b | ✓ | 16 | 99.n | odd | 30 | 1 | |
891.2.n.h | 32 | 1.a | even | 1 | 1 | trivial | |
891.2.n.h | 32 | 3.b | odd | 2 | 1 | inner | |
891.2.n.h | 32 | 9.c | even | 3 | 1 | inner | |
891.2.n.h | 32 | 9.d | odd | 6 | 1 | inner | |
891.2.n.h | 32 | 11.c | even | 5 | 1 | inner | |
891.2.n.h | 32 | 33.h | odd | 10 | 1 | inner | |
891.2.n.h | 32 | 99.m | even | 15 | 1 | inner | |
891.2.n.h | 32 | 99.n | odd | 30 | 1 | inner | |
3267.2.a.bi | 8 | 99.o | odd | 30 | 1 | ||
3267.2.a.bi | 8 | 99.p | even | 30 | 1 | ||
3267.2.a.bj | 8 | 99.m | even | 15 | 1 | ||
3267.2.a.bj | 8 | 99.n | odd | 30 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{32} - 9 T_{2}^{30} + 30 T_{2}^{28} + 39 T_{2}^{26} - 1116 T_{2}^{24} + 10994 T_{2}^{22} + \cdots + 625 \) acting on \(S_{2}^{\mathrm{new}}(891, [\chi])\).