L(s) = 1 | + (−0.707 − 0.707i)2-s + (0.707 − 0.707i)3-s + 1.00i·4-s − 1.00·6-s + (0.707 − 0.707i)8-s − 1.00i·9-s + (0.707 + 0.707i)12-s − 1.00·16-s + (−0.707 + 0.707i)18-s + (−1.41 + 1.41i)23-s − 1.00i·24-s + (−0.707 − 0.707i)27-s + (0.707 + 0.707i)32-s + 1.00·36-s + 2.00·46-s + (1.41 + 1.41i)47-s + ⋯ |
L(s) = 1 | + (−0.707 − 0.707i)2-s + (0.707 − 0.707i)3-s + 1.00i·4-s − 1.00·6-s + (0.707 − 0.707i)8-s − 1.00i·9-s + (0.707 + 0.707i)12-s − 1.00·16-s + (−0.707 + 0.707i)18-s + (−1.41 + 1.41i)23-s − 1.00i·24-s + (−0.707 − 0.707i)27-s + (0.707 + 0.707i)32-s + 1.00·36-s + 2.00·46-s + (1.41 + 1.41i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.229 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.229 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6786550477\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6786550477\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 + 0.707i)T \) |
| 3 | \( 1 + (-0.707 + 0.707i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - iT^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 - iT^{2} \) |
| 17 | \( 1 - iT^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + (1.41 - 1.41i)T - iT^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + (-1.41 - 1.41i)T + iT^{2} \) |
| 53 | \( 1 + iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + 2T + T^{2} \) |
| 67 | \( 1 - iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 - iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + (-1.41 + 1.41i)T - iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.89337111932262939459546795726, −10.82697880088106251299296589853, −9.698795883592432429217393018388, −9.043328147972449035216947636172, −7.959230405478041662023382150220, −7.39702987660357997151345068660, −6.08961050487577342783472551019, −4.11189807717108522972642807070, −2.95202118631667417301243876022, −1.64326021482888890759658743212,
2.27254191941686987914538653412, 4.05799487665792761554002855629, 5.20514727985965618683528124107, 6.41489599425655357514547952408, 7.63682054159941470575817119598, 8.432854045302240909782223598137, 9.206753516558630516183198582758, 10.17969104465293479269883107173, 10.71344051272530761808112858427, 12.02717060312634771820883431067