Properties

Label 300.1.l.a
Level $300$
Weight $1$
Character orbit 300.l
Analytic conductor $0.150$
Analytic rank $0$
Dimension $4$
Projective image $D_{2}$
CM/RM discs -15, -20, 12
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [300,1,Mod(107,300)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(300, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("300.107");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 300.l (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.149719503790\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{2}\)
Projective field: Galois closure of \(\Q(\sqrt{3}, \sqrt{-5})\)
Artin image: $\OD_{16}:C_2$
Artin field: Galois closure of 16.0.10251562500000000.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{8} q^{2} - \zeta_{8}^{3} q^{3} + \zeta_{8}^{2} q^{4} - q^{6} - \zeta_{8}^{3} q^{8} - \zeta_{8}^{2} q^{9} + \zeta_{8} q^{12} - q^{16} + \zeta_{8}^{3} q^{18} + 2 \zeta_{8}^{3} q^{23} - \zeta_{8}^{2} q^{24} + \cdots - \zeta_{8}^{3} q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{6} - 4 q^{16} + 4 q^{36} + 8 q^{46} - 8 q^{61} - 4 q^{81} + 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/300\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(277\)
\(\chi(n)\) \(-1\) \(-1\) \(\zeta_{8}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
107.1
0.707107 + 0.707107i
−0.707107 0.707107i
0.707107 0.707107i
−0.707107 + 0.707107i
−0.707107 0.707107i 0.707107 0.707107i 1.00000i 0 −1.00000 0 0.707107 0.707107i 1.00000i 0
107.2 0.707107 + 0.707107i −0.707107 + 0.707107i 1.00000i 0 −1.00000 0 −0.707107 + 0.707107i 1.00000i 0
143.1 −0.707107 + 0.707107i 0.707107 + 0.707107i 1.00000i 0 −1.00000 0 0.707107 + 0.707107i 1.00000i 0
143.2 0.707107 0.707107i −0.707107 0.707107i 1.00000i 0 −1.00000 0 −0.707107 0.707107i 1.00000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
12.b even 2 1 RM by \(\Q(\sqrt{3}) \)
15.d odd 2 1 CM by \(\Q(\sqrt{-15}) \)
20.d odd 2 1 CM by \(\Q(\sqrt{-5}) \)
3.b odd 2 1 inner
4.b odd 2 1 inner
5.b even 2 1 inner
5.c odd 4 2 inner
15.e even 4 2 inner
20.e even 4 2 inner
60.h even 2 1 inner
60.l odd 4 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 300.1.l.a 4
3.b odd 2 1 inner 300.1.l.a 4
4.b odd 2 1 inner 300.1.l.a 4
5.b even 2 1 inner 300.1.l.a 4
5.c odd 4 2 inner 300.1.l.a 4
12.b even 2 1 RM 300.1.l.a 4
15.d odd 2 1 CM 300.1.l.a 4
15.e even 4 2 inner 300.1.l.a 4
20.d odd 2 1 CM 300.1.l.a 4
20.e even 4 2 inner 300.1.l.a 4
60.h even 2 1 inner 300.1.l.a 4
60.l odd 4 2 inner 300.1.l.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
300.1.l.a 4 1.a even 1 1 trivial
300.1.l.a 4 3.b odd 2 1 inner
300.1.l.a 4 4.b odd 2 1 inner
300.1.l.a 4 5.b even 2 1 inner
300.1.l.a 4 5.c odd 4 2 inner
300.1.l.a 4 12.b even 2 1 RM
300.1.l.a 4 15.d odd 2 1 CM
300.1.l.a 4 15.e even 4 2 inner
300.1.l.a 4 20.d odd 2 1 CM
300.1.l.a 4 20.e even 4 2 inner
300.1.l.a 4 60.h even 2 1 inner
300.1.l.a 4 60.l odd 4 2 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(300, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 1 \) Copy content Toggle raw display
$3$ \( T^{4} + 1 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} + 16 \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} + 16 \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( (T + 2)^{4} \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} + 16 \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less