Properties

Label 300.1.l.a
Level 300300
Weight 11
Character orbit 300.l
Analytic conductor 0.1500.150
Analytic rank 00
Dimension 44
Projective image D2D_{2}
CM/RM discs -15, -20, 12
Inner twists 1616

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [300,1,Mod(107,300)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(300, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("300.107");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 300=22352 300 = 2^{2} \cdot 3 \cdot 5^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 300.l (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.1497195037900.149719503790
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(i)\Q(i)
Coefficient field: Q(ζ8)\Q(\zeta_{8})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D2D_{2}
Projective field: Galois closure of Q(3,5)\Q(\sqrt{3}, \sqrt{-5})
Artin image: OD16:C2\OD_{16}:C_2
Artin field: Galois closure of 16.0.10251562500000000.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qζ8q2ζ83q3+ζ82q4q6ζ83q8ζ82q9+ζ8q12q16+ζ83q18+2ζ83q23ζ82q24+ζ83q98+O(q100) q - \zeta_{8} q^{2} - \zeta_{8}^{3} q^{3} + \zeta_{8}^{2} q^{4} - q^{6} - \zeta_{8}^{3} q^{8} - \zeta_{8}^{2} q^{9} + \zeta_{8} q^{12} - q^{16} + \zeta_{8}^{3} q^{18} + 2 \zeta_{8}^{3} q^{23} - \zeta_{8}^{2} q^{24} + \cdots - \zeta_{8}^{3} q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q64q16+4q36+8q468q614q81+4q96+O(q100) 4 q - 4 q^{6} - 4 q^{16} + 4 q^{36} + 8 q^{46} - 8 q^{61} - 4 q^{81} + 4 q^{96}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/300Z)×\left(\mathbb{Z}/300\mathbb{Z}\right)^\times.

nn 101101 151151 277277
χ(n)\chi(n) 1-1 1-1 ζ82\zeta_{8}^{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
107.1
0.707107 + 0.707107i
−0.707107 0.707107i
0.707107 0.707107i
−0.707107 + 0.707107i
−0.707107 0.707107i 0.707107 0.707107i 1.00000i 0 −1.00000 0 0.707107 0.707107i 1.00000i 0
107.2 0.707107 + 0.707107i −0.707107 + 0.707107i 1.00000i 0 −1.00000 0 −0.707107 + 0.707107i 1.00000i 0
143.1 −0.707107 + 0.707107i 0.707107 + 0.707107i 1.00000i 0 −1.00000 0 0.707107 + 0.707107i 1.00000i 0
143.2 0.707107 0.707107i −0.707107 0.707107i 1.00000i 0 −1.00000 0 −0.707107 0.707107i 1.00000i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
12.b even 2 1 RM by Q(3)\Q(\sqrt{3})
15.d odd 2 1 CM by Q(15)\Q(\sqrt{-15})
20.d odd 2 1 CM by Q(5)\Q(\sqrt{-5})
3.b odd 2 1 inner
4.b odd 2 1 inner
5.b even 2 1 inner
5.c odd 4 2 inner
15.e even 4 2 inner
20.e even 4 2 inner
60.h even 2 1 inner
60.l odd 4 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 300.1.l.a 4
3.b odd 2 1 inner 300.1.l.a 4
4.b odd 2 1 inner 300.1.l.a 4
5.b even 2 1 inner 300.1.l.a 4
5.c odd 4 2 inner 300.1.l.a 4
12.b even 2 1 RM 300.1.l.a 4
15.d odd 2 1 CM 300.1.l.a 4
15.e even 4 2 inner 300.1.l.a 4
20.d odd 2 1 CM 300.1.l.a 4
20.e even 4 2 inner 300.1.l.a 4
60.h even 2 1 inner 300.1.l.a 4
60.l odd 4 2 inner 300.1.l.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
300.1.l.a 4 1.a even 1 1 trivial
300.1.l.a 4 3.b odd 2 1 inner
300.1.l.a 4 4.b odd 2 1 inner
300.1.l.a 4 5.b even 2 1 inner
300.1.l.a 4 5.c odd 4 2 inner
300.1.l.a 4 12.b even 2 1 RM
300.1.l.a 4 15.d odd 2 1 CM
300.1.l.a 4 15.e even 4 2 inner
300.1.l.a 4 20.d odd 2 1 CM
300.1.l.a 4 20.e even 4 2 inner
300.1.l.a 4 60.h even 2 1 inner
300.1.l.a 4 60.l odd 4 2 inner

Hecke kernels

This newform subspace is the entire newspace S1new(300,[χ])S_{1}^{\mathrm{new}}(300, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4+1 T^{4} + 1 Copy content Toggle raw display
33 T4+1 T^{4} + 1 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4 T^{4} Copy content Toggle raw display
1111 T4 T^{4} Copy content Toggle raw display
1313 T4 T^{4} Copy content Toggle raw display
1717 T4 T^{4} Copy content Toggle raw display
1919 T4 T^{4} Copy content Toggle raw display
2323 T4+16 T^{4} + 16 Copy content Toggle raw display
2929 T4 T^{4} Copy content Toggle raw display
3131 T4 T^{4} Copy content Toggle raw display
3737 T4 T^{4} Copy content Toggle raw display
4141 T4 T^{4} Copy content Toggle raw display
4343 T4 T^{4} Copy content Toggle raw display
4747 T4+16 T^{4} + 16 Copy content Toggle raw display
5353 T4 T^{4} Copy content Toggle raw display
5959 T4 T^{4} Copy content Toggle raw display
6161 (T+2)4 (T + 2)^{4} Copy content Toggle raw display
6767 T4 T^{4} Copy content Toggle raw display
7171 T4 T^{4} Copy content Toggle raw display
7373 T4 T^{4} Copy content Toggle raw display
7979 T4 T^{4} Copy content Toggle raw display
8383 T4+16 T^{4} + 16 Copy content Toggle raw display
8989 T4 T^{4} Copy content Toggle raw display
9797 T4 T^{4} Copy content Toggle raw display
show more
show less