L(s) = 1 | + (−2.23 − 2i)3-s + 2i·7-s + (1.00 + 8.94i)9-s + 13.4i·11-s − 8i·13-s − 13.4·17-s + 34·19-s + (4 − 4.47i)21-s + 40.2·23-s + (15.6 − 22.0i)27-s + 40.2i·29-s + 14·31-s + (26.8 − 30.0i)33-s + 56i·37-s + (−16 + 17.8i)39-s + ⋯ |
L(s) = 1 | + (−0.745 − 0.666i)3-s + 0.285i·7-s + (0.111 + 0.993i)9-s + 1.21i·11-s − 0.615i·13-s − 0.789·17-s + 1.78·19-s + (0.190 − 0.212i)21-s + 1.74·23-s + (0.579 − 0.814i)27-s + 1.38i·29-s + 0.451·31-s + (0.813 − 0.909i)33-s + 1.51i·37-s + (−0.410 + 0.458i)39-s + ⋯ |
Λ(s)=(=(300s/2ΓC(s)L(s)(0.929−0.368i)Λ(3−s)
Λ(s)=(=(300s/2ΓC(s+1)L(s)(0.929−0.368i)Λ(1−s)
Degree: |
2 |
Conductor: |
300
= 22⋅3⋅52
|
Sign: |
0.929−0.368i
|
Analytic conductor: |
8.17440 |
Root analytic conductor: |
2.85909 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ300(149,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 300, ( :1), 0.929−0.368i)
|
Particular Values
L(23) |
≈ |
1.18112+0.225574i |
L(21) |
≈ |
1.18112+0.225574i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(2.23+2i)T |
| 5 | 1 |
good | 7 | 1−2iT−49T2 |
| 11 | 1−13.4iT−121T2 |
| 13 | 1+8iT−169T2 |
| 17 | 1+13.4T+289T2 |
| 19 | 1−34T+361T2 |
| 23 | 1−40.2T+529T2 |
| 29 | 1−40.2iT−841T2 |
| 31 | 1−14T+961T2 |
| 37 | 1−56iT−1.36e3T2 |
| 41 | 1+26.8iT−1.68e3T2 |
| 43 | 1+8iT−1.84e3T2 |
| 47 | 1−40.2T+2.20e3T2 |
| 53 | 1+40.2T+2.80e3T2 |
| 59 | 1+13.4iT−3.48e3T2 |
| 61 | 1+46T+3.72e3T2 |
| 67 | 1−32iT−4.48e3T2 |
| 71 | 1−53.6iT−5.04e3T2 |
| 73 | 1−106iT−5.32e3T2 |
| 79 | 1−22T+6.24e3T2 |
| 83 | 1+120.T+6.88e3T2 |
| 89 | 1+107.iT−7.92e3T2 |
| 97 | 1−122iT−9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.67491287396899532945683869913, −10.78814719538746616487173932599, −9.816994786239068141701716547466, −8.687171284818910508052261474275, −7.38465657961656225191887835176, −6.88568984473372541655652726549, −5.49875699226628949783339057997, −4.76656131635516598791009424454, −2.83405182838099226883775213756, −1.25078637838298401631685047854,
0.77475133942346317145728847786, 3.13385976447391963677200149841, 4.33337270366909505230202698452, 5.42653055467533229033956953344, 6.38054458799849057792642677908, 7.47909025193132483199793278401, 8.927268389431399089464542199731, 9.545643525936812910738848792386, 10.78807501206847077592719275585, 11.28345877427665201339789754580