Properties

Label 300.3.b.c
Level $300$
Weight $3$
Character orbit 300.b
Analytic conductor $8.174$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [300,3,Mod(149,300)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(300, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("300.149");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 300.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.17440793081\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 60)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{3} - \beta_1) q^{3} + \beta_1 q^{7} + ( - 2 \beta_{2} + 1) q^{9} - 3 \beta_{2} q^{11} - 4 \beta_1 q^{13} + 6 \beta_{3} q^{17} + 34 q^{19} + (\beta_{2} + 4) q^{21} - 18 \beta_{3} q^{23} + ( - 7 \beta_{3} - 11 \beta_1) q^{27}+ \cdots + ( - 3 \beta_{2} - 120) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{9} + 136 q^{19} + 16 q^{21} + 56 q^{31} - 64 q^{39} + 180 q^{49} + 120 q^{51} - 184 q^{61} - 360 q^{69} + 88 q^{79} - 316 q^{81} + 64 q^{91} - 480 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 3x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu^{3} + 4\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\nu^{3} + 8\nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{2} + 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 3 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -\beta_{2} + 2\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/300\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(277\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
149.1
1.61803i
1.61803i
0.618034i
0.618034i
0 −2.23607 2.00000i 0 0 0 2.00000i 0 1.00000 + 8.94427i 0
149.2 0 −2.23607 + 2.00000i 0 0 0 2.00000i 0 1.00000 8.94427i 0
149.3 0 2.23607 2.00000i 0 0 0 2.00000i 0 1.00000 8.94427i 0
149.4 0 2.23607 + 2.00000i 0 0 0 2.00000i 0 1.00000 + 8.94427i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.b even 2 1 inner
15.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 300.3.b.c 4
3.b odd 2 1 inner 300.3.b.c 4
4.b odd 2 1 1200.3.c.e 4
5.b even 2 1 inner 300.3.b.c 4
5.c odd 4 1 60.3.g.a 2
5.c odd 4 1 300.3.g.d 2
12.b even 2 1 1200.3.c.e 4
15.d odd 2 1 inner 300.3.b.c 4
15.e even 4 1 60.3.g.a 2
15.e even 4 1 300.3.g.d 2
20.d odd 2 1 1200.3.c.e 4
20.e even 4 1 240.3.l.a 2
20.e even 4 1 1200.3.l.r 2
40.i odd 4 1 960.3.l.a 2
40.k even 4 1 960.3.l.d 2
45.k odd 12 2 1620.3.o.b 4
45.l even 12 2 1620.3.o.b 4
60.h even 2 1 1200.3.c.e 4
60.l odd 4 1 240.3.l.a 2
60.l odd 4 1 1200.3.l.r 2
120.q odd 4 1 960.3.l.d 2
120.w even 4 1 960.3.l.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
60.3.g.a 2 5.c odd 4 1
60.3.g.a 2 15.e even 4 1
240.3.l.a 2 20.e even 4 1
240.3.l.a 2 60.l odd 4 1
300.3.b.c 4 1.a even 1 1 trivial
300.3.b.c 4 3.b odd 2 1 inner
300.3.b.c 4 5.b even 2 1 inner
300.3.b.c 4 15.d odd 2 1 inner
300.3.g.d 2 5.c odd 4 1
300.3.g.d 2 15.e even 4 1
960.3.l.a 2 40.i odd 4 1
960.3.l.a 2 120.w even 4 1
960.3.l.d 2 40.k even 4 1
960.3.l.d 2 120.q odd 4 1
1200.3.c.e 4 4.b odd 2 1
1200.3.c.e 4 12.b even 2 1
1200.3.c.e 4 20.d odd 2 1
1200.3.c.e 4 60.h even 2 1
1200.3.l.r 2 20.e even 4 1
1200.3.l.r 2 60.l odd 4 1
1620.3.o.b 4 45.k odd 12 2
1620.3.o.b 4 45.l even 12 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(300, [\chi])\):

\( T_{7}^{2} + 4 \) Copy content Toggle raw display
\( T_{11}^{2} + 180 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 2T^{2} + 81 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 180)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 64)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} - 180)^{2} \) Copy content Toggle raw display
$19$ \( (T - 34)^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} - 1620)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 1620)^{2} \) Copy content Toggle raw display
$31$ \( (T - 14)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} + 3136)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 720)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 64)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 1620)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} - 1620)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 180)^{2} \) Copy content Toggle raw display
$61$ \( (T + 46)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} + 1024)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 2880)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 11236)^{2} \) Copy content Toggle raw display
$79$ \( (T - 22)^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} - 14580)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 11520)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 14884)^{2} \) Copy content Toggle raw display
show more
show less