Properties

Label 300.3.b.c
Level 300300
Weight 33
Character orbit 300.b
Analytic conductor 8.1748.174
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [300,3,Mod(149,300)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(300, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("300.149");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 300=22352 300 = 2^{2} \cdot 3 \cdot 5^{2}
Weight: k k == 3 3
Character orbit: [χ][\chi] == 300.b (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 8.174407930818.17440793081
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,5)\Q(i, \sqrt{5})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+3x2+1 x^{4} + 3x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 24 2^{4}
Twist minimal: no (minimal twist has level 60)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β3β1)q3+β1q7+(2β2+1)q93β2q114β1q13+6β3q17+34q19+(β2+4)q2118β3q23+(7β311β1)q27++(3β2120)q99+O(q100) q + (\beta_{3} - \beta_1) q^{3} + \beta_1 q^{7} + ( - 2 \beta_{2} + 1) q^{9} - 3 \beta_{2} q^{11} - 4 \beta_1 q^{13} + 6 \beta_{3} q^{17} + 34 q^{19} + (\beta_{2} + 4) q^{21} - 18 \beta_{3} q^{23} + ( - 7 \beta_{3} - 11 \beta_1) q^{27}+ \cdots + ( - 3 \beta_{2} - 120) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+4q9+136q19+16q21+56q3164q39+180q49+120q51184q61360q69+88q79316q81+64q91480q99+O(q100) 4 q + 4 q^{9} + 136 q^{19} + 16 q^{21} + 56 q^{31} - 64 q^{39} + 180 q^{49} + 120 q^{51} - 184 q^{61} - 360 q^{69} + 88 q^{79} - 316 q^{81} + 64 q^{91} - 480 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+3x2+1 x^{4} + 3x^{2} + 1 : Copy content Toggle raw display

β1\beta_{1}== 2ν3+4ν 2\nu^{3} + 4\nu Copy content Toggle raw display
β2\beta_{2}== 2ν3+8ν 2\nu^{3} + 8\nu Copy content Toggle raw display
β3\beta_{3}== 2ν2+3 2\nu^{2} + 3 Copy content Toggle raw display
ν\nu== (β2β1)/4 ( \beta_{2} - \beta_1 ) / 4 Copy content Toggle raw display
ν2\nu^{2}== (β33)/2 ( \beta_{3} - 3 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== (β2+2β1)/2 ( -\beta_{2} + 2\beta_1 ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/300Z)×\left(\mathbb{Z}/300\mathbb{Z}\right)^\times.

nn 101101 151151 277277
χ(n)\chi(n) 1-1 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
149.1
1.61803i
1.61803i
0.618034i
0.618034i
0 −2.23607 2.00000i 0 0 0 2.00000i 0 1.00000 + 8.94427i 0
149.2 0 −2.23607 + 2.00000i 0 0 0 2.00000i 0 1.00000 8.94427i 0
149.3 0 2.23607 2.00000i 0 0 0 2.00000i 0 1.00000 8.94427i 0
149.4 0 2.23607 + 2.00000i 0 0 0 2.00000i 0 1.00000 + 8.94427i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.b even 2 1 inner
15.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 300.3.b.c 4
3.b odd 2 1 inner 300.3.b.c 4
4.b odd 2 1 1200.3.c.e 4
5.b even 2 1 inner 300.3.b.c 4
5.c odd 4 1 60.3.g.a 2
5.c odd 4 1 300.3.g.d 2
12.b even 2 1 1200.3.c.e 4
15.d odd 2 1 inner 300.3.b.c 4
15.e even 4 1 60.3.g.a 2
15.e even 4 1 300.3.g.d 2
20.d odd 2 1 1200.3.c.e 4
20.e even 4 1 240.3.l.a 2
20.e even 4 1 1200.3.l.r 2
40.i odd 4 1 960.3.l.a 2
40.k even 4 1 960.3.l.d 2
45.k odd 12 2 1620.3.o.b 4
45.l even 12 2 1620.3.o.b 4
60.h even 2 1 1200.3.c.e 4
60.l odd 4 1 240.3.l.a 2
60.l odd 4 1 1200.3.l.r 2
120.q odd 4 1 960.3.l.d 2
120.w even 4 1 960.3.l.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
60.3.g.a 2 5.c odd 4 1
60.3.g.a 2 15.e even 4 1
240.3.l.a 2 20.e even 4 1
240.3.l.a 2 60.l odd 4 1
300.3.b.c 4 1.a even 1 1 trivial
300.3.b.c 4 3.b odd 2 1 inner
300.3.b.c 4 5.b even 2 1 inner
300.3.b.c 4 15.d odd 2 1 inner
300.3.g.d 2 5.c odd 4 1
300.3.g.d 2 15.e even 4 1
960.3.l.a 2 40.i odd 4 1
960.3.l.a 2 120.w even 4 1
960.3.l.d 2 40.k even 4 1
960.3.l.d 2 120.q odd 4 1
1200.3.c.e 4 4.b odd 2 1
1200.3.c.e 4 12.b even 2 1
1200.3.c.e 4 20.d odd 2 1
1200.3.c.e 4 60.h even 2 1
1200.3.l.r 2 20.e even 4 1
1200.3.l.r 2 60.l odd 4 1
1620.3.o.b 4 45.k odd 12 2
1620.3.o.b 4 45.l even 12 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S3new(300,[χ])S_{3}^{\mathrm{new}}(300, [\chi]):

T72+4 T_{7}^{2} + 4 Copy content Toggle raw display
T112+180 T_{11}^{2} + 180 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T42T2+81 T^{4} - 2T^{2} + 81 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 (T2+4)2 (T^{2} + 4)^{2} Copy content Toggle raw display
1111 (T2+180)2 (T^{2} + 180)^{2} Copy content Toggle raw display
1313 (T2+64)2 (T^{2} + 64)^{2} Copy content Toggle raw display
1717 (T2180)2 (T^{2} - 180)^{2} Copy content Toggle raw display
1919 (T34)4 (T - 34)^{4} Copy content Toggle raw display
2323 (T21620)2 (T^{2} - 1620)^{2} Copy content Toggle raw display
2929 (T2+1620)2 (T^{2} + 1620)^{2} Copy content Toggle raw display
3131 (T14)4 (T - 14)^{4} Copy content Toggle raw display
3737 (T2+3136)2 (T^{2} + 3136)^{2} Copy content Toggle raw display
4141 (T2+720)2 (T^{2} + 720)^{2} Copy content Toggle raw display
4343 (T2+64)2 (T^{2} + 64)^{2} Copy content Toggle raw display
4747 (T21620)2 (T^{2} - 1620)^{2} Copy content Toggle raw display
5353 (T21620)2 (T^{2} - 1620)^{2} Copy content Toggle raw display
5959 (T2+180)2 (T^{2} + 180)^{2} Copy content Toggle raw display
6161 (T+46)4 (T + 46)^{4} Copy content Toggle raw display
6767 (T2+1024)2 (T^{2} + 1024)^{2} Copy content Toggle raw display
7171 (T2+2880)2 (T^{2} + 2880)^{2} Copy content Toggle raw display
7373 (T2+11236)2 (T^{2} + 11236)^{2} Copy content Toggle raw display
7979 (T22)4 (T - 22)^{4} Copy content Toggle raw display
8383 (T214580)2 (T^{2} - 14580)^{2} Copy content Toggle raw display
8989 (T2+11520)2 (T^{2} + 11520)^{2} Copy content Toggle raw display
9797 (T2+14884)2 (T^{2} + 14884)^{2} Copy content Toggle raw display
show more
show less