Properties

Label 60.3.g.a
Level 6060
Weight 33
Character orbit 60.g
Analytic conductor 1.6351.635
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [60,3,Mod(41,60)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(60, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("60.41");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 60=2235 60 = 2^{2} \cdot 3 \cdot 5
Weight: k k == 3 3
Character orbit: [χ][\chi] == 60.g (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.634881586161.63488158616
Analytic rank: 00
Dimension: 22
Coefficient field: Q(5)\Q(\sqrt{-5})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+5 x^{2} + 5 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=5\beta = \sqrt{-5}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β+2)q3+βq5+2q7+(4β1)q96βq11+8q13+(2β5)q156βq1734q19+(2β+4)q2118βq235q25+(7β22)q27++(6β+120)q99+O(q100) q + (\beta + 2) q^{3} + \beta q^{5} + 2 q^{7} + (4 \beta - 1) q^{9} - 6 \beta q^{11} + 8 q^{13} + (2 \beta - 5) q^{15} - 6 \beta q^{17} - 34 q^{19} + (2 \beta + 4) q^{21} - 18 \beta q^{23} - 5 q^{25} + (7 \beta - 22) q^{27} + \cdots + (6 \beta + 120) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+4q3+4q72q9+16q1310q1568q19+8q2110q2544q27+28q31+60q33+112q37+32q39+16q4340q4590q49+60q51++240q99+O(q100) 2 q + 4 q^{3} + 4 q^{7} - 2 q^{9} + 16 q^{13} - 10 q^{15} - 68 q^{19} + 8 q^{21} - 10 q^{25} - 44 q^{27} + 28 q^{31} + 60 q^{33} + 112 q^{37} + 32 q^{39} + 16 q^{43} - 40 q^{45} - 90 q^{49} + 60 q^{51}+ \cdots + 240 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/60Z)×\left(\mathbb{Z}/60\mathbb{Z}\right)^\times.

nn 3131 3737 4141
χ(n)\chi(n) 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
41.1
2.23607i
2.23607i
0 2.00000 2.23607i 0 2.23607i 0 2.00000 0 −1.00000 8.94427i 0
41.2 0 2.00000 + 2.23607i 0 2.23607i 0 2.00000 0 −1.00000 + 8.94427i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 60.3.g.a 2
3.b odd 2 1 inner 60.3.g.a 2
4.b odd 2 1 240.3.l.a 2
5.b even 2 1 300.3.g.d 2
5.c odd 4 2 300.3.b.c 4
8.b even 2 1 960.3.l.a 2
8.d odd 2 1 960.3.l.d 2
9.c even 3 2 1620.3.o.b 4
9.d odd 6 2 1620.3.o.b 4
12.b even 2 1 240.3.l.a 2
15.d odd 2 1 300.3.g.d 2
15.e even 4 2 300.3.b.c 4
20.d odd 2 1 1200.3.l.r 2
20.e even 4 2 1200.3.c.e 4
24.f even 2 1 960.3.l.d 2
24.h odd 2 1 960.3.l.a 2
60.h even 2 1 1200.3.l.r 2
60.l odd 4 2 1200.3.c.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
60.3.g.a 2 1.a even 1 1 trivial
60.3.g.a 2 3.b odd 2 1 inner
240.3.l.a 2 4.b odd 2 1
240.3.l.a 2 12.b even 2 1
300.3.b.c 4 5.c odd 4 2
300.3.b.c 4 15.e even 4 2
300.3.g.d 2 5.b even 2 1
300.3.g.d 2 15.d odd 2 1
960.3.l.a 2 8.b even 2 1
960.3.l.a 2 24.h odd 2 1
960.3.l.d 2 8.d odd 2 1
960.3.l.d 2 24.f even 2 1
1200.3.c.e 4 20.e even 4 2
1200.3.c.e 4 60.l odd 4 2
1200.3.l.r 2 20.d odd 2 1
1200.3.l.r 2 60.h even 2 1
1620.3.o.b 4 9.c even 3 2
1620.3.o.b 4 9.d odd 6 2

Hecke kernels

This newform subspace is the entire newspace S3new(60,[χ])S_{3}^{\mathrm{new}}(60, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T24T+9 T^{2} - 4T + 9 Copy content Toggle raw display
55 T2+5 T^{2} + 5 Copy content Toggle raw display
77 (T2)2 (T - 2)^{2} Copy content Toggle raw display
1111 T2+180 T^{2} + 180 Copy content Toggle raw display
1313 (T8)2 (T - 8)^{2} Copy content Toggle raw display
1717 T2+180 T^{2} + 180 Copy content Toggle raw display
1919 (T+34)2 (T + 34)^{2} Copy content Toggle raw display
2323 T2+1620 T^{2} + 1620 Copy content Toggle raw display
2929 T2+1620 T^{2} + 1620 Copy content Toggle raw display
3131 (T14)2 (T - 14)^{2} Copy content Toggle raw display
3737 (T56)2 (T - 56)^{2} Copy content Toggle raw display
4141 T2+720 T^{2} + 720 Copy content Toggle raw display
4343 (T8)2 (T - 8)^{2} Copy content Toggle raw display
4747 T2+1620 T^{2} + 1620 Copy content Toggle raw display
5353 T2+1620 T^{2} + 1620 Copy content Toggle raw display
5959 T2+180 T^{2} + 180 Copy content Toggle raw display
6161 (T+46)2 (T + 46)^{2} Copy content Toggle raw display
6767 (T32)2 (T - 32)^{2} Copy content Toggle raw display
7171 T2+2880 T^{2} + 2880 Copy content Toggle raw display
7373 (T+106)2 (T + 106)^{2} Copy content Toggle raw display
7979 (T+22)2 (T + 22)^{2} Copy content Toggle raw display
8383 T2+14580 T^{2} + 14580 Copy content Toggle raw display
8989 T2+11520 T^{2} + 11520 Copy content Toggle raw display
9797 (T122)2 (T - 122)^{2} Copy content Toggle raw display
show more
show less