Properties

Label 4-300e2-1.1-c5e2-0-4
Degree $4$
Conductor $90000$
Sign $1$
Analytic cond. $2315.06$
Root an. cond. $6.93650$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 81·9-s + 432·11-s − 3.16e3·19-s + 9.13e3·29-s + 5.48e3·31-s − 2.67e4·41-s + 3.16e4·49-s + 3.11e4·59-s + 7.86e4·61-s + 1.14e5·71-s + 2.11e4·79-s + 6.56e3·81-s + 2.32e5·89-s − 3.49e4·99-s + 5.52e4·101-s + 4.60e5·109-s − 1.82e5·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 1.49e5·169-s + ⋯
L(s)  = 1  − 1/3·9-s + 1.07·11-s − 2.00·19-s + 2.01·29-s + 1.02·31-s − 2.48·41-s + 1.88·49-s + 1.16·59-s + 2.70·61-s + 2.68·71-s + 0.380·79-s + 1/9·81-s + 3.11·89-s − 0.358·99-s + 0.538·101-s + 3.71·109-s − 1.13·121-s + 5.50e−6·127-s + 5.09e−6·131-s + 4.55e−6·137-s + 4.38e−6·139-s + 3.69e−6·149-s + 3.56e−6·151-s + 3.23e−6·157-s + 2.94e−6·163-s + 2.77e−6·167-s + 0.403·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 90000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 90000 ^{s/2} \, \Gamma_{\C}(s+5/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(90000\)    =    \(2^{4} \cdot 3^{2} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(2315.06\)
Root analytic conductor: \(6.93650\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 90000,\ (\ :5/2, 5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(3.129121456\)
\(L(\frac12)\) \(\approx\) \(3.129121456\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + p^{4} T^{2} \)
5 \( 1 \)
good7$C_2^2$ \( 1 - 31678 T^{2} + p^{10} T^{4} \)
11$C_2$ \( ( 1 - 216 T + p^{5} T^{2} )^{2} \)
13$C_2^2$ \( 1 - 149686 T^{2} + p^{10} T^{4} \)
17$C_2^2$ \( 1 - 2554558 T^{2} + p^{10} T^{4} \)
19$C_2$ \( ( 1 + 1580 T + p^{5} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 4439470 T^{2} + p^{10} T^{4} \)
29$C_2$ \( ( 1 - 4566 T + p^{5} T^{2} )^{2} \)
31$C_2$ \( ( 1 - 2744 T + p^{5} T^{2} )^{2} \)
37$C_2^2$ \( 1 - 136608550 T^{2} + p^{10} T^{4} \)
41$C_2$ \( ( 1 + 13350 T + p^{5} T^{2} )^{2} \)
43$C_2^2$ \( 1 + 1960730 T^{2} + p^{10} T^{4} \)
47$C_2^2$ \( 1 - 341531038 T^{2} + p^{10} T^{4} \)
53$C_2^2$ \( 1 - 737547622 T^{2} + p^{10} T^{4} \)
59$C_2$ \( ( 1 - 264 p T + p^{5} T^{2} )^{2} \)
61$C_2$ \( ( 1 - 39302 T + p^{5} T^{2} )^{2} \)
67$C_2^2$ \( 1 + 412943402 T^{2} + p^{10} T^{4} \)
71$C_2$ \( ( 1 - 57120 T + p^{5} T^{2} )^{2} \)
73$C_2^2$ \( 1 - 1605781582 T^{2} + p^{10} T^{4} \)
79$C_2$ \( ( 1 - 10552 T + p^{5} T^{2} )^{2} \)
83$C_2^2$ \( 1 + 567290 p^{2} T^{2} + p^{10} T^{4} \)
89$C_2$ \( ( 1 - 116430 T + p^{5} T^{2} )^{2} \)
97$C_2^2$ \( 1 - 17166940990 T^{2} + p^{10} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.21115750836384368434329691411, −10.53104170324327817908202198584, −10.17441185710974251919933355535, −9.959430315134498845067613761964, −9.042912236779925476228196944217, −8.768100900965576323745367955383, −8.299413736454956642585167024553, −8.068771507561092723159468306081, −6.93576742330407891727936038341, −6.79751272198149287838526002146, −6.33720193390784163211742803727, −5.80699508266202579623123524944, −4.86707540992403090175228484694, −4.71558616395278519890037109159, −3.73206934808178501428819469534, −3.58330081840341827902651458639, −2.33615532441914227899475679760, −2.21704720789067257294825913843, −1.03548875318616564790633239603, −0.56064957615016467624518410478, 0.56064957615016467624518410478, 1.03548875318616564790633239603, 2.21704720789067257294825913843, 2.33615532441914227899475679760, 3.58330081840341827902651458639, 3.73206934808178501428819469534, 4.71558616395278519890037109159, 4.86707540992403090175228484694, 5.80699508266202579623123524944, 6.33720193390784163211742803727, 6.79751272198149287838526002146, 6.93576742330407891727936038341, 8.068771507561092723159468306081, 8.299413736454956642585167024553, 8.768100900965576323745367955383, 9.042912236779925476228196944217, 9.959430315134498845067613761964, 10.17441185710974251919933355535, 10.53104170324327817908202198584, 11.21115750836384368434329691411

Graph of the $Z$-function along the critical line