Properties

Label 300.6.d.e
Level $300$
Weight $6$
Character orbit 300.d
Analytic conductor $48.115$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [300,6,Mod(49,300)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(300, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("300.49");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 300.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(48.1151459439\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 60)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 9 i q^{3} + 44 i q^{7} - 81 q^{9} + 216 q^{11} - 770 i q^{13} + 534 i q^{17} - 1580 q^{19} - 396 q^{21} - 2904 i q^{23} - 729 i q^{27} + 4566 q^{29} + 2744 q^{31} + 1944 i q^{33} + 1442 i q^{37} + 6930 q^{39} + \cdots - 17496 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 162 q^{9} + 432 q^{11} - 3160 q^{19} - 792 q^{21} + 9132 q^{29} + 5488 q^{31} + 13860 q^{39} - 26700 q^{41} + 29742 q^{49} - 9612 q^{51} + 31152 q^{59} + 78604 q^{61} + 52272 q^{69} + 114240 q^{71}+ \cdots - 34992 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/300\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(277\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
1.00000i
1.00000i
0 9.00000i 0 0 0 44.0000i 0 −81.0000 0
49.2 0 9.00000i 0 0 0 44.0000i 0 −81.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 300.6.d.e 2
3.b odd 2 1 900.6.d.b 2
5.b even 2 1 inner 300.6.d.e 2
5.c odd 4 1 60.6.a.a 1
5.c odd 4 1 300.6.a.d 1
15.d odd 2 1 900.6.d.b 2
15.e even 4 1 180.6.a.d 1
15.e even 4 1 900.6.a.f 1
20.e even 4 1 240.6.a.i 1
40.i odd 4 1 960.6.a.z 1
40.k even 4 1 960.6.a.i 1
60.l odd 4 1 720.6.a.p 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
60.6.a.a 1 5.c odd 4 1
180.6.a.d 1 15.e even 4 1
240.6.a.i 1 20.e even 4 1
300.6.a.d 1 5.c odd 4 1
300.6.d.e 2 1.a even 1 1 trivial
300.6.d.e 2 5.b even 2 1 inner
720.6.a.p 1 60.l odd 4 1
900.6.a.f 1 15.e even 4 1
900.6.d.b 2 3.b odd 2 1
900.6.d.b 2 15.d odd 2 1
960.6.a.i 1 40.k even 4 1
960.6.a.z 1 40.i odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{2} + 1936 \) acting on \(S_{6}^{\mathrm{new}}(300, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 81 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 1936 \) Copy content Toggle raw display
$11$ \( (T - 216)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 592900 \) Copy content Toggle raw display
$17$ \( T^{2} + 285156 \) Copy content Toggle raw display
$19$ \( (T + 1580)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 8433216 \) Copy content Toggle raw display
$29$ \( (T - 4566)^{2} \) Copy content Toggle raw display
$31$ \( (T - 2744)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 2079364 \) Copy content Toggle raw display
$41$ \( (T + 13350)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 295977616 \) Copy content Toggle raw display
$47$ \( T^{2} + 117158976 \) Copy content Toggle raw display
$53$ \( T^{2} + 98843364 \) Copy content Toggle raw display
$59$ \( (T - 15576)^{2} \) Copy content Toggle raw display
$61$ \( (T - 39302)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 3113193616 \) Copy content Toggle raw display
$71$ \( (T - 57120)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 2540361604 \) Copy content Toggle raw display
$79$ \( (T - 10552)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 11786142096 \) Copy content Toggle raw display
$89$ \( (T - 116430)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 7739524 \) Copy content Toggle raw display
show more
show less