Properties

Label 300.6.d.e
Level 300300
Weight 66
Character orbit 300.d
Analytic conductor 48.11548.115
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [300,6,Mod(49,300)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(300, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("300.49");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 300=22352 300 = 2^{2} \cdot 3 \cdot 5^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 300.d (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 48.115145943948.1151459439
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 60)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+9iq3+44iq781q9+216q11770iq13+534iq171580q19396q212904iq23729iq27+4566q29+2744q31+1944iq33+1442iq37+6930q39+17496q99+O(q100) q + 9 i q^{3} + 44 i q^{7} - 81 q^{9} + 216 q^{11} - 770 i q^{13} + 534 i q^{17} - 1580 q^{19} - 396 q^{21} - 2904 i q^{23} - 729 i q^{27} + 4566 q^{29} + 2744 q^{31} + 1944 i q^{33} + 1442 i q^{37} + 6930 q^{39} + \cdots - 17496 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q162q9+432q113160q19792q21+9132q29+5488q31+13860q3926700q41+29742q499612q51+31152q59+78604q61+52272q69+114240q71+34992q99+O(q100) 2 q - 162 q^{9} + 432 q^{11} - 3160 q^{19} - 792 q^{21} + 9132 q^{29} + 5488 q^{31} + 13860 q^{39} - 26700 q^{41} + 29742 q^{49} - 9612 q^{51} + 31152 q^{59} + 78604 q^{61} + 52272 q^{69} + 114240 q^{71}+ \cdots - 34992 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/300Z)×\left(\mathbb{Z}/300\mathbb{Z}\right)^\times.

nn 101101 151151 277277
χ(n)\chi(n) 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
49.1
1.00000i
1.00000i
0 9.00000i 0 0 0 44.0000i 0 −81.0000 0
49.2 0 9.00000i 0 0 0 44.0000i 0 −81.0000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 300.6.d.e 2
3.b odd 2 1 900.6.d.b 2
5.b even 2 1 inner 300.6.d.e 2
5.c odd 4 1 60.6.a.a 1
5.c odd 4 1 300.6.a.d 1
15.d odd 2 1 900.6.d.b 2
15.e even 4 1 180.6.a.d 1
15.e even 4 1 900.6.a.f 1
20.e even 4 1 240.6.a.i 1
40.i odd 4 1 960.6.a.z 1
40.k even 4 1 960.6.a.i 1
60.l odd 4 1 720.6.a.p 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
60.6.a.a 1 5.c odd 4 1
180.6.a.d 1 15.e even 4 1
240.6.a.i 1 20.e even 4 1
300.6.a.d 1 5.c odd 4 1
300.6.d.e 2 1.a even 1 1 trivial
300.6.d.e 2 5.b even 2 1 inner
720.6.a.p 1 60.l odd 4 1
900.6.a.f 1 15.e even 4 1
900.6.d.b 2 3.b odd 2 1
900.6.d.b 2 15.d odd 2 1
960.6.a.i 1 40.k even 4 1
960.6.a.z 1 40.i odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T72+1936 T_{7}^{2} + 1936 acting on S6new(300,[χ])S_{6}^{\mathrm{new}}(300, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+81 T^{2} + 81 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+1936 T^{2} + 1936 Copy content Toggle raw display
1111 (T216)2 (T - 216)^{2} Copy content Toggle raw display
1313 T2+592900 T^{2} + 592900 Copy content Toggle raw display
1717 T2+285156 T^{2} + 285156 Copy content Toggle raw display
1919 (T+1580)2 (T + 1580)^{2} Copy content Toggle raw display
2323 T2+8433216 T^{2} + 8433216 Copy content Toggle raw display
2929 (T4566)2 (T - 4566)^{2} Copy content Toggle raw display
3131 (T2744)2 (T - 2744)^{2} Copy content Toggle raw display
3737 T2+2079364 T^{2} + 2079364 Copy content Toggle raw display
4141 (T+13350)2 (T + 13350)^{2} Copy content Toggle raw display
4343 T2+295977616 T^{2} + 295977616 Copy content Toggle raw display
4747 T2+117158976 T^{2} + 117158976 Copy content Toggle raw display
5353 T2+98843364 T^{2} + 98843364 Copy content Toggle raw display
5959 (T15576)2 (T - 15576)^{2} Copy content Toggle raw display
6161 (T39302)2 (T - 39302)^{2} Copy content Toggle raw display
6767 T2+3113193616 T^{2} + 3113193616 Copy content Toggle raw display
7171 (T57120)2 (T - 57120)^{2} Copy content Toggle raw display
7373 T2+2540361604 T^{2} + 2540361604 Copy content Toggle raw display
7979 (T10552)2 (T - 10552)^{2} Copy content Toggle raw display
8383 T2+11786142096 T^{2} + 11786142096 Copy content Toggle raw display
8989 (T116430)2 (T - 116430)^{2} Copy content Toggle raw display
9797 T2+7739524 T^{2} + 7739524 Copy content Toggle raw display
show more
show less