L(s) = 1 | − 0.280i·5-s + (−0.164 − 2.64i)7-s − 2.82i·11-s + (−4.06 − 2.34i)13-s + (7.00 + 4.04i)17-s + (0.474 + 0.821i)19-s + 0.392i·23-s + 4.92·25-s + (−1.51 − 2.61i)29-s + (−1.06 − 1.84i)31-s + (−0.741 + 0.0462i)35-s + (−2.43 − 4.21i)37-s + (0.478 + 0.276i)41-s + (4.28 − 2.47i)43-s + (1.39 − 2.41i)47-s + ⋯ |
L(s) = 1 | − 0.125i·5-s + (−0.0622 − 0.998i)7-s − 0.850i·11-s + (−1.12 − 0.651i)13-s + (1.69 + 0.980i)17-s + (0.108 + 0.188i)19-s + 0.0818i·23-s + 0.984·25-s + (−0.280 − 0.486i)29-s + (−0.191 − 0.330i)31-s + (−0.125 + 0.00781i)35-s + (−0.400 − 0.693i)37-s + (0.0748 + 0.0431i)41-s + (0.653 − 0.377i)43-s + (0.203 − 0.352i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.609 + 0.792i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.609 + 0.792i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.283077717\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.283077717\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (0.164 + 2.64i)T \) |
good | 5 | \( 1 + 0.280iT - 5T^{2} \) |
| 11 | \( 1 + 2.82iT - 11T^{2} \) |
| 13 | \( 1 + (4.06 + 2.34i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-7.00 - 4.04i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.474 - 0.821i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 0.392iT - 23T^{2} \) |
| 29 | \( 1 + (1.51 + 2.61i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (1.06 + 1.84i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (2.43 + 4.21i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.478 - 0.276i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.28 + 2.47i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.39 + 2.41i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (6.21 - 10.7i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (5.70 + 9.87i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (9.67 + 5.58i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-7.85 + 4.53i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 1.54iT - 71T^{2} \) |
| 73 | \( 1 + (0.542 + 0.313i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (13.3 + 7.71i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (5.30 + 9.19i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (9.90 - 5.71i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (13.6 - 7.86i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.235477506041032100762980194379, −7.74769990181816876273336518850, −7.13277834464456498052279764688, −6.05574195634798299293472401316, −5.47294963466743785399448421992, −4.52986277760725120165423904790, −3.59648513996819348105446595868, −2.94873535704737589115655245892, −1.49073366268667909094145214573, −0.41352609007570741073269883120,
1.42202510598987405194464259623, 2.56574971980172177669431311354, 3.15811887735455540991089059004, 4.53417601102362315345258193893, 5.11512173176275800486738347105, 5.83156861749997307913468859463, 6.98153294285996179145812993265, 7.29037788130465442356421775135, 8.258851037442985017434723201573, 9.118056974520406328518160768910