Properties

Label 3024.2.bf.h.1711.7
Level $3024$
Weight $2$
Character 3024.1711
Analytic conductor $24.147$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3024,2,Mod(1711,3024)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3024, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3024.1711");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.bf (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 1008)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1711.7
Character \(\chi\) \(=\) 3024.1711
Dual form 3024.2.bf.h.2287.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.280665i q^{5} +(-0.164674 - 2.64062i) q^{7} -2.82201i q^{11} +(-4.06955 - 2.34956i) q^{13} +(7.00051 + 4.04175i) q^{17} +(0.474304 + 0.821518i) q^{19} +0.392466i q^{23} +4.92123 q^{25} +(-1.51148 - 2.61795i) q^{29} +(-1.06355 - 1.84211i) q^{31} +(-0.741129 + 0.0462181i) q^{35} +(-2.43458 - 4.21681i) q^{37} +(0.478990 + 0.276545i) q^{41} +(4.28515 - 2.47404i) q^{43} +(1.39435 - 2.41508i) q^{47} +(-6.94577 + 0.869682i) q^{49} +(-6.21935 + 10.7722i) q^{53} -0.792039 q^{55} +(-5.70053 - 9.87361i) q^{59} +(-9.67619 - 5.58655i) q^{61} +(-0.659437 + 1.14218i) q^{65} +(7.85871 - 4.53723i) q^{67} +1.54594i q^{71} +(-0.542172 - 0.313023i) q^{73} +(-7.45187 + 0.464711i) q^{77} +(-13.3691 - 7.71866i) q^{79} +(-5.30821 - 9.19409i) q^{83} +(1.13438 - 1.96480i) q^{85} +(-9.90157 + 5.71667i) q^{89} +(-5.53414 + 11.1331i) q^{91} +(0.230571 - 0.133120i) q^{95} +(-13.6260 + 7.86698i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{7} + 3 q^{13} + 3 q^{17} + 4 q^{19} - 30 q^{25} - 18 q^{29} + 17 q^{31} - 42 q^{35} - 3 q^{37} + 36 q^{41} + 24 q^{43} + 21 q^{47} - 24 q^{49} + 12 q^{53} + 30 q^{55} + 6 q^{59} - 48 q^{61}+ \cdots - 3 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.280665i 0.125517i −0.998029 0.0627585i \(-0.980010\pi\)
0.998029 0.0627585i \(-0.0199898\pi\)
\(6\) 0 0
\(7\) −0.164674 2.64062i −0.0622408 0.998061i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.82201i 0.850869i −0.904989 0.425434i \(-0.860121\pi\)
0.904989 0.425434i \(-0.139879\pi\)
\(12\) 0 0
\(13\) −4.06955 2.34956i −1.12869 0.651650i −0.185085 0.982722i \(-0.559256\pi\)
−0.943605 + 0.331073i \(0.892589\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 7.00051 + 4.04175i 1.69787 + 0.980268i 0.947774 + 0.318944i \(0.103328\pi\)
0.750100 + 0.661324i \(0.230005\pi\)
\(18\) 0 0
\(19\) 0.474304 + 0.821518i 0.108813 + 0.188469i 0.915290 0.402797i \(-0.131962\pi\)
−0.806477 + 0.591266i \(0.798628\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.392466i 0.0818348i 0.999163 + 0.0409174i \(0.0130280\pi\)
−0.999163 + 0.0409174i \(0.986972\pi\)
\(24\) 0 0
\(25\) 4.92123 0.984245
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.51148 2.61795i −0.280674 0.486142i 0.690877 0.722973i \(-0.257225\pi\)
−0.971551 + 0.236831i \(0.923891\pi\)
\(30\) 0 0
\(31\) −1.06355 1.84211i −0.191018 0.330854i 0.754570 0.656220i \(-0.227846\pi\)
−0.945588 + 0.325366i \(0.894512\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.741129 + 0.0462181i −0.125274 + 0.00781229i
\(36\) 0 0
\(37\) −2.43458 4.21681i −0.400242 0.693240i 0.593513 0.804825i \(-0.297741\pi\)
−0.993755 + 0.111585i \(0.964407\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.478990 + 0.276545i 0.0748057 + 0.0431891i 0.536936 0.843623i \(-0.319582\pi\)
−0.462131 + 0.886812i \(0.652915\pi\)
\(42\) 0 0
\(43\) 4.28515 2.47404i 0.653480 0.377287i −0.136308 0.990666i \(-0.543524\pi\)
0.789788 + 0.613380i \(0.210190\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.39435 2.41508i 0.203387 0.352276i −0.746231 0.665687i \(-0.768138\pi\)
0.949618 + 0.313411i \(0.101472\pi\)
\(48\) 0 0
\(49\) −6.94577 + 0.869682i −0.992252 + 0.124240i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −6.21935 + 10.7722i −0.854293 + 1.47968i 0.0230067 + 0.999735i \(0.492676\pi\)
−0.877300 + 0.479943i \(0.840657\pi\)
\(54\) 0 0
\(55\) −0.792039 −0.106799
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −5.70053 9.87361i −0.742146 1.28543i −0.951516 0.307598i \(-0.900475\pi\)
0.209371 0.977836i \(-0.432859\pi\)
\(60\) 0 0
\(61\) −9.67619 5.58655i −1.23891 0.715284i −0.270038 0.962850i \(-0.587036\pi\)
−0.968871 + 0.247565i \(0.920370\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.659437 + 1.14218i −0.0817932 + 0.141670i
\(66\) 0 0
\(67\) 7.85871 4.53723i 0.960095 0.554311i 0.0638926 0.997957i \(-0.479648\pi\)
0.896202 + 0.443646i \(0.146315\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.54594i 0.183469i 0.995784 + 0.0917344i \(0.0292411\pi\)
−0.995784 + 0.0917344i \(0.970759\pi\)
\(72\) 0 0
\(73\) −0.542172 0.313023i −0.0634564 0.0366366i 0.467936 0.883762i \(-0.344998\pi\)
−0.531393 + 0.847126i \(0.678331\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −7.45187 + 0.464711i −0.849219 + 0.0529588i
\(78\) 0 0
\(79\) −13.3691 7.71866i −1.50414 0.868417i −0.999988 0.00480263i \(-0.998471\pi\)
−0.504153 0.863614i \(-0.668195\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −5.30821 9.19409i −0.582652 1.00918i −0.995164 0.0982303i \(-0.968682\pi\)
0.412512 0.910952i \(-0.364652\pi\)
\(84\) 0 0
\(85\) 1.13438 1.96480i 0.123040 0.213112i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −9.90157 + 5.71667i −1.04956 + 0.605966i −0.922527 0.385932i \(-0.873880\pi\)
−0.127037 + 0.991898i \(0.540547\pi\)
\(90\) 0 0
\(91\) −5.53414 + 11.1331i −0.580136 + 1.16706i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.230571 0.133120i 0.0236561 0.0136579i
\(96\) 0 0
\(97\) −13.6260 + 7.86698i −1.38351 + 0.798770i −0.992573 0.121647i \(-0.961182\pi\)
−0.390937 + 0.920417i \(0.627849\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 7.01091i 0.697611i 0.937195 + 0.348806i \(0.113413\pi\)
−0.937195 + 0.348806i \(0.886587\pi\)
\(102\) 0 0
\(103\) 5.63248 0.554985 0.277493 0.960728i \(-0.410497\pi\)
0.277493 + 0.960728i \(0.410497\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.00552 + 2.88994i −0.483902 + 0.279381i −0.722041 0.691850i \(-0.756796\pi\)
0.238139 + 0.971231i \(0.423463\pi\)
\(108\) 0 0
\(109\) 4.12859 7.15092i 0.395447 0.684934i −0.597711 0.801712i \(-0.703923\pi\)
0.993158 + 0.116777i \(0.0372564\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 6.47539 11.2157i 0.609154 1.05508i −0.382227 0.924069i \(-0.624843\pi\)
0.991380 0.131016i \(-0.0418240\pi\)
\(114\) 0 0
\(115\) 0.110151 0.0102717
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 9.51993 19.1513i 0.872690 1.75559i
\(120\) 0 0
\(121\) 3.03625 0.276023
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 2.78454i 0.249057i
\(126\) 0 0
\(127\) 7.77236i 0.689685i −0.938660 0.344843i \(-0.887932\pi\)
0.938660 0.344843i \(-0.112068\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.98542 0.697690 0.348845 0.937180i \(-0.386574\pi\)
0.348845 + 0.937180i \(0.386574\pi\)
\(132\) 0 0
\(133\) 2.09121 1.38774i 0.181331 0.120332i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −8.64941 −0.738969 −0.369484 0.929237i \(-0.620466\pi\)
−0.369484 + 0.929237i \(0.620466\pi\)
\(138\) 0 0
\(139\) 7.19469 12.4616i 0.610246 1.05698i −0.380953 0.924595i \(-0.624404\pi\)
0.991199 0.132383i \(-0.0422627\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −6.63048 + 11.4843i −0.554468 + 0.960367i
\(144\) 0 0
\(145\) −0.734767 + 0.424218i −0.0610191 + 0.0352294i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.06764 0.0874644 0.0437322 0.999043i \(-0.486075\pi\)
0.0437322 + 0.999043i \(0.486075\pi\)
\(150\) 0 0
\(151\) 12.9439i 1.05336i 0.850064 + 0.526679i \(0.176563\pi\)
−0.850064 + 0.526679i \(0.823437\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.517016 + 0.298500i −0.0415278 + 0.0239761i
\(156\) 0 0
\(157\) 7.01702 4.05128i 0.560019 0.323327i −0.193134 0.981172i \(-0.561865\pi\)
0.753153 + 0.657845i \(0.228532\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.03635 0.0646288i 0.0816761 0.00509346i
\(162\) 0 0
\(163\) 15.8164 9.13162i 1.23884 0.715244i 0.269982 0.962865i \(-0.412982\pi\)
0.968857 + 0.247621i \(0.0796489\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −8.41991 + 14.5837i −0.651553 + 1.12852i 0.331194 + 0.943563i \(0.392549\pi\)
−0.982746 + 0.184959i \(0.940785\pi\)
\(168\) 0 0
\(169\) 4.54083 + 7.86496i 0.349295 + 0.604997i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 17.1823 + 9.92020i 1.30635 + 0.754219i 0.981484 0.191543i \(-0.0613492\pi\)
0.324861 + 0.945762i \(0.394682\pi\)
\(174\) 0 0
\(175\) −0.810397 12.9951i −0.0612603 0.982337i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −21.5488 12.4412i −1.61063 0.929899i −0.989224 0.146413i \(-0.953227\pi\)
−0.621409 0.783486i \(-0.713439\pi\)
\(180\) 0 0
\(181\) 7.30569i 0.543027i 0.962435 + 0.271514i \(0.0875242\pi\)
−0.962435 + 0.271514i \(0.912476\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1.18351 + 0.683300i −0.0870134 + 0.0502372i
\(186\) 0 0
\(187\) 11.4059 19.7555i 0.834079 1.44467i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −7.11844 4.10983i −0.515072 0.297377i 0.219844 0.975535i \(-0.429445\pi\)
−0.734916 + 0.678158i \(0.762778\pi\)
\(192\) 0 0
\(193\) −9.78487 16.9479i −0.704331 1.21994i −0.966933 0.255032i \(-0.917914\pi\)
0.262602 0.964904i \(-0.415419\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −16.3933 −1.16797 −0.583987 0.811763i \(-0.698508\pi\)
−0.583987 + 0.811763i \(0.698508\pi\)
\(198\) 0 0
\(199\) 7.86905 13.6296i 0.557822 0.966176i −0.439856 0.898068i \(-0.644971\pi\)
0.997678 0.0681077i \(-0.0216961\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −6.66413 + 4.42235i −0.467730 + 0.310388i
\(204\) 0 0
\(205\) 0.0776164 0.134436i 0.00542097 0.00938939i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.31833 1.33849i 0.160363 0.0925854i
\(210\) 0 0
\(211\) 7.41442 + 4.28072i 0.510430 + 0.294697i 0.733010 0.680218i \(-0.238115\pi\)
−0.222581 + 0.974914i \(0.571448\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −0.694374 1.20269i −0.0473559 0.0820229i
\(216\) 0 0
\(217\) −4.68919 + 3.11177i −0.318323 + 0.211241i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −18.9926 32.8962i −1.27758 2.21284i
\(222\) 0 0
\(223\) −9.63167 16.6825i −0.644984 1.11715i −0.984305 0.176475i \(-0.943531\pi\)
0.339321 0.940671i \(-0.389803\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −20.6399 −1.36992 −0.684960 0.728581i \(-0.740180\pi\)
−0.684960 + 0.728581i \(0.740180\pi\)
\(228\) 0 0
\(229\) 21.1950i 1.40060i 0.713848 + 0.700301i \(0.246951\pi\)
−0.713848 + 0.700301i \(0.753049\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 7.78510 + 13.4842i 0.510019 + 0.883378i 0.999933 + 0.0116076i \(0.00369490\pi\)
−0.489914 + 0.871771i \(0.662972\pi\)
\(234\) 0 0
\(235\) −0.677828 0.391344i −0.0442167 0.0255285i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −6.36686 3.67591i −0.411838 0.237775i 0.279741 0.960075i \(-0.409751\pi\)
−0.691579 + 0.722301i \(0.743085\pi\)
\(240\) 0 0
\(241\) 5.75441i 0.370674i 0.982675 + 0.185337i \(0.0593376\pi\)
−0.982675 + 0.185337i \(0.940662\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0.244089 + 1.94943i 0.0155943 + 0.124545i
\(246\) 0 0
\(247\) 4.45762i 0.283631i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 21.9997 1.38861 0.694305 0.719681i \(-0.255712\pi\)
0.694305 + 0.719681i \(0.255712\pi\)
\(252\) 0 0
\(253\) 1.10754 0.0696306
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.45564i 0.0908000i −0.998969 0.0454000i \(-0.985544\pi\)
0.998969 0.0454000i \(-0.0144562\pi\)
\(258\) 0 0
\(259\) −10.7341 + 7.12320i −0.666985 + 0.442614i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 21.2421i 1.30984i −0.755696 0.654922i \(-0.772701\pi\)
0.755696 0.654922i \(-0.227299\pi\)
\(264\) 0 0
\(265\) 3.02338 + 1.74555i 0.185725 + 0.107228i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −17.4754 10.0894i −1.06549 0.615162i −0.138546 0.990356i \(-0.544243\pi\)
−0.926946 + 0.375194i \(0.877576\pi\)
\(270\) 0 0
\(271\) 8.69232 + 15.0555i 0.528021 + 0.914559i 0.999466 + 0.0326639i \(0.0103991\pi\)
−0.471445 + 0.881895i \(0.656268\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 13.8878i 0.837464i
\(276\) 0 0
\(277\) 1.13376 0.0681208 0.0340604 0.999420i \(-0.489156\pi\)
0.0340604 + 0.999420i \(0.489156\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6.37564 + 11.0429i 0.380339 + 0.658766i 0.991111 0.133040i \(-0.0424740\pi\)
−0.610772 + 0.791807i \(0.709141\pi\)
\(282\) 0 0
\(283\) 3.38500 + 5.86300i 0.201218 + 0.348519i 0.948921 0.315514i \(-0.102177\pi\)
−0.747703 + 0.664033i \(0.768844\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.651374 1.31037i 0.0384494 0.0773488i
\(288\) 0 0
\(289\) 24.1715 + 41.8662i 1.42185 + 2.46272i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −10.5242 6.07616i −0.614831 0.354973i 0.160023 0.987113i \(-0.448843\pi\)
−0.774854 + 0.632140i \(0.782177\pi\)
\(294\) 0 0
\(295\) −2.77117 + 1.59994i −0.161344 + 0.0931519i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.922120 1.59716i 0.0533276 0.0923661i
\(300\) 0 0
\(301\) −7.23864 10.9081i −0.417228 0.628730i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1.56795 + 2.71576i −0.0897804 + 0.155504i
\(306\) 0 0
\(307\) −17.3006 −0.987396 −0.493698 0.869634i \(-0.664355\pi\)
−0.493698 + 0.869634i \(0.664355\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 13.2379 + 22.9288i 0.750655 + 1.30017i 0.947505 + 0.319739i \(0.103595\pi\)
−0.196850 + 0.980434i \(0.563071\pi\)
\(312\) 0 0
\(313\) −3.86883 2.23367i −0.218679 0.126255i 0.386659 0.922223i \(-0.373629\pi\)
−0.605339 + 0.795968i \(0.706962\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 14.7017 25.4640i 0.825728 1.43020i −0.0756338 0.997136i \(-0.524098\pi\)
0.901362 0.433067i \(-0.142569\pi\)
\(318\) 0 0
\(319\) −7.38790 + 4.26541i −0.413643 + 0.238817i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 7.66807i 0.426663i
\(324\) 0 0
\(325\) −20.0272 11.5627i −1.11091 0.641383i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −6.60693 3.28425i −0.364252 0.181066i
\(330\) 0 0
\(331\) −0.850295 0.490918i −0.0467364 0.0269833i 0.476450 0.879202i \(-0.341923\pi\)
−0.523186 + 0.852218i \(0.675257\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −1.27344 2.20566i −0.0695755 0.120508i
\(336\) 0 0
\(337\) 5.58390 9.67160i 0.304174 0.526846i −0.672903 0.739731i \(-0.734953\pi\)
0.977077 + 0.212885i \(0.0682861\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −5.19847 + 3.00134i −0.281513 + 0.162532i
\(342\) 0 0
\(343\) 3.44029 + 18.1979i 0.185758 + 0.982596i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −7.61089 + 4.39415i −0.408574 + 0.235890i −0.690177 0.723641i \(-0.742467\pi\)
0.281603 + 0.959531i \(0.409134\pi\)
\(348\) 0 0
\(349\) 18.2265 10.5231i 0.975644 0.563288i 0.0746915 0.997207i \(-0.476203\pi\)
0.900952 + 0.433919i \(0.142869\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2.64279i 0.140661i 0.997524 + 0.0703307i \(0.0224055\pi\)
−0.997524 + 0.0703307i \(0.977595\pi\)
\(354\) 0 0
\(355\) 0.433889 0.0230285
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 20.5571 11.8687i 1.08496 0.626405i 0.152733 0.988267i \(-0.451192\pi\)
0.932231 + 0.361863i \(0.117859\pi\)
\(360\) 0 0
\(361\) 9.05007 15.6752i 0.476320 0.825010i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −0.0878545 + 0.152168i −0.00459852 + 0.00796486i
\(366\) 0 0
\(367\) 30.6820 1.60159 0.800793 0.598942i \(-0.204412\pi\)
0.800793 + 0.598942i \(0.204412\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 29.4695 + 14.6490i 1.52998 + 0.760540i
\(372\) 0 0
\(373\) 6.58921 0.341176 0.170588 0.985342i \(-0.445433\pi\)
0.170588 + 0.985342i \(0.445433\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 14.2052i 0.731605i
\(378\) 0 0
\(379\) 0.316910i 0.0162786i 0.999967 + 0.00813930i \(0.00259085\pi\)
−0.999967 + 0.00813930i \(0.997409\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 3.69711 0.188913 0.0944567 0.995529i \(-0.469889\pi\)
0.0944567 + 0.995529i \(0.469889\pi\)
\(384\) 0 0
\(385\) 0.130428 + 2.09148i 0.00664723 + 0.106591i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 8.59629 0.435849 0.217925 0.975966i \(-0.430071\pi\)
0.217925 + 0.975966i \(0.430071\pi\)
\(390\) 0 0
\(391\) −1.58625 + 2.74746i −0.0802200 + 0.138945i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −2.16635 + 3.75224i −0.109001 + 0.188795i
\(396\) 0 0
\(397\) −10.9255 + 6.30783i −0.548334 + 0.316581i −0.748450 0.663192i \(-0.769201\pi\)
0.200116 + 0.979772i \(0.435868\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 26.1292 1.30483 0.652414 0.757862i \(-0.273756\pi\)
0.652414 + 0.757862i \(0.273756\pi\)
\(402\) 0 0
\(403\) 9.99544i 0.497908i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −11.8999 + 6.87041i −0.589856 + 0.340554i
\(408\) 0 0
\(409\) −0.249796 + 0.144220i −0.0123516 + 0.00713121i −0.506163 0.862438i \(-0.668937\pi\)
0.493811 + 0.869569i \(0.335603\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −25.1337 + 16.6789i −1.23675 + 0.820713i
\(414\) 0 0
\(415\) −2.58046 + 1.48983i −0.126670 + 0.0731327i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −9.56824 + 16.5727i −0.467439 + 0.809629i −0.999308 0.0371983i \(-0.988157\pi\)
0.531869 + 0.846827i \(0.321490\pi\)
\(420\) 0 0
\(421\) −11.5319 19.9738i −0.562030 0.973465i −0.997319 0.0731740i \(-0.976687\pi\)
0.435289 0.900291i \(-0.356646\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 34.4511 + 19.8904i 1.67112 + 0.964824i
\(426\) 0 0
\(427\) −13.1585 + 26.4711i −0.636787 + 1.28103i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 13.2196 + 7.63235i 0.636766 + 0.367637i 0.783368 0.621558i \(-0.213500\pi\)
−0.146601 + 0.989196i \(0.546833\pi\)
\(432\) 0 0
\(433\) 24.5275i 1.17871i −0.807873 0.589357i \(-0.799381\pi\)
0.807873 0.589357i \(-0.200619\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.322418 + 0.186148i −0.0154233 + 0.00890467i
\(438\) 0 0
\(439\) −9.14003 + 15.8310i −0.436230 + 0.755572i −0.997395 0.0721316i \(-0.977020\pi\)
0.561165 + 0.827704i \(0.310353\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 4.51333 + 2.60578i 0.214435 + 0.123804i 0.603371 0.797461i \(-0.293824\pi\)
−0.388936 + 0.921265i \(0.627157\pi\)
\(444\) 0 0
\(445\) 1.60447 + 2.77902i 0.0760591 + 0.131738i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 9.38031 0.442684 0.221342 0.975196i \(-0.428956\pi\)
0.221342 + 0.975196i \(0.428956\pi\)
\(450\) 0 0
\(451\) 0.780414 1.35172i 0.0367482 0.0636498i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 3.12466 + 1.55324i 0.146486 + 0.0728169i
\(456\) 0 0
\(457\) −14.6810 + 25.4283i −0.686749 + 1.18948i 0.286134 + 0.958190i \(0.407630\pi\)
−0.972884 + 0.231295i \(0.925704\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −1.10606 + 0.638584i −0.0515144 + 0.0297418i −0.525536 0.850771i \(-0.676135\pi\)
0.474022 + 0.880513i \(0.342802\pi\)
\(462\) 0 0
\(463\) −23.8988 13.7980i −1.11067 0.641247i −0.171669 0.985155i \(-0.554916\pi\)
−0.939004 + 0.343907i \(0.888249\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5.00656 + 8.67162i 0.231676 + 0.401275i 0.958301 0.285759i \(-0.0922458\pi\)
−0.726625 + 0.687034i \(0.758912\pi\)
\(468\) 0 0
\(469\) −13.2752 20.0047i −0.612993 0.923733i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −6.98176 12.0928i −0.321022 0.556026i
\(474\) 0 0
\(475\) 2.33416 + 4.04288i 0.107098 + 0.185500i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −14.7895 −0.675749 −0.337874 0.941191i \(-0.609708\pi\)
−0.337874 + 0.941191i \(0.609708\pi\)
\(480\) 0 0
\(481\) 22.8807i 1.04327i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.20798 + 3.82434i 0.100259 + 0.173654i
\(486\) 0 0
\(487\) −12.8101 7.39589i −0.580479 0.335140i 0.180845 0.983512i \(-0.442117\pi\)
−0.761324 + 0.648372i \(0.775450\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −12.5410 7.24053i −0.565966 0.326760i 0.189571 0.981867i \(-0.439290\pi\)
−0.755536 + 0.655107i \(0.772624\pi\)
\(492\) 0 0
\(493\) 24.4360i 1.10054i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4.08223 0.254575i 0.183113 0.0114193i
\(498\) 0 0
\(499\) 8.69119i 0.389071i −0.980895 0.194536i \(-0.937680\pi\)
0.980895 0.194536i \(-0.0623200\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 40.3239 1.79795 0.898977 0.437995i \(-0.144311\pi\)
0.898977 + 0.437995i \(0.144311\pi\)
\(504\) 0 0
\(505\) 1.96771 0.0875621
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 3.37858i 0.149753i 0.997193 + 0.0748764i \(0.0238562\pi\)
−0.997193 + 0.0748764i \(0.976144\pi\)
\(510\) 0 0
\(511\) −0.737294 + 1.48322i −0.0326160 + 0.0656137i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 1.58084i 0.0696601i
\(516\) 0 0
\(517\) −6.81539 3.93487i −0.299741 0.173055i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 34.6315 + 19.9945i 1.51723 + 0.875976i 0.999795 + 0.0202566i \(0.00644831\pi\)
0.517440 + 0.855719i \(0.326885\pi\)
\(522\) 0 0
\(523\) −6.43351 11.1432i −0.281318 0.487257i 0.690392 0.723436i \(-0.257438\pi\)
−0.971710 + 0.236179i \(0.924105\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 17.1943i 0.748997i
\(528\) 0 0
\(529\) 22.8460 0.993303
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −1.29952 2.25083i −0.0562883 0.0974942i
\(534\) 0 0
\(535\) 0.811103 + 1.40487i 0.0350671 + 0.0607379i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.45425 + 19.6010i 0.105712 + 0.844276i
\(540\) 0 0
\(541\) −2.79138 4.83481i −0.120011 0.207865i 0.799761 0.600319i \(-0.204960\pi\)
−0.919772 + 0.392454i \(0.871626\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −2.00701 1.15875i −0.0859709 0.0496353i
\(546\) 0 0
\(547\) −9.37486 + 5.41258i −0.400840 + 0.231425i −0.686846 0.726803i \(-0.741006\pi\)
0.286006 + 0.958228i \(0.407672\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1.43380 2.48341i 0.0610819 0.105797i
\(552\) 0 0
\(553\) −18.1805 + 36.5738i −0.773114 + 1.55528i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −8.38879 + 14.5298i −0.355445 + 0.615648i −0.987194 0.159525i \(-0.949004\pi\)
0.631749 + 0.775173i \(0.282337\pi\)
\(558\) 0 0
\(559\) −23.2515 −0.983436
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −14.3360 24.8307i −0.604192 1.04649i −0.992179 0.124826i \(-0.960163\pi\)
0.387987 0.921665i \(-0.373171\pi\)
\(564\) 0 0
\(565\) −3.14785 1.81741i −0.132431 0.0764592i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 16.6286 28.8015i 0.697106 1.20742i −0.272360 0.962195i \(-0.587804\pi\)
0.969466 0.245227i \(-0.0788625\pi\)
\(570\) 0 0
\(571\) −28.2309 + 16.2991i −1.18143 + 0.682097i −0.956344 0.292243i \(-0.905598\pi\)
−0.225082 + 0.974340i \(0.572265\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1.93141i 0.0805455i
\(576\) 0 0
\(577\) 11.6155 + 6.70622i 0.483560 + 0.279183i 0.721899 0.691999i \(-0.243270\pi\)
−0.238339 + 0.971182i \(0.576603\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −23.4040 + 15.5310i −0.970961 + 0.644334i
\(582\) 0 0
\(583\) 30.3993 + 17.5511i 1.25901 + 0.726891i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 17.2883 + 29.9443i 0.713566 + 1.23593i 0.963510 + 0.267673i \(0.0862546\pi\)
−0.249943 + 0.968260i \(0.580412\pi\)
\(588\) 0 0
\(589\) 1.00889 1.74744i 0.0415705 0.0720022i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −16.9169 + 9.76697i −0.694693 + 0.401081i −0.805368 0.592775i \(-0.798032\pi\)
0.110675 + 0.993857i \(0.464699\pi\)
\(594\) 0 0
\(595\) −5.37509 2.67191i −0.220357 0.109538i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −14.5524 + 8.40186i −0.594597 + 0.343291i −0.766913 0.641751i \(-0.778208\pi\)
0.172316 + 0.985042i \(0.444875\pi\)
\(600\) 0 0
\(601\) −6.18993 + 3.57376i −0.252492 + 0.145777i −0.620905 0.783886i \(-0.713235\pi\)
0.368413 + 0.929662i \(0.379901\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0.852167i 0.0346455i
\(606\) 0 0
\(607\) 17.8635 0.725058 0.362529 0.931972i \(-0.381913\pi\)
0.362529 + 0.931972i \(0.381913\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −11.3488 + 6.55220i −0.459121 + 0.265074i
\(612\) 0 0
\(613\) 9.85193 17.0640i 0.397916 0.689210i −0.595553 0.803316i \(-0.703067\pi\)
0.993469 + 0.114106i \(0.0364003\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 15.2946 26.4910i 0.615738 1.06649i −0.374517 0.927220i \(-0.622191\pi\)
0.990255 0.139269i \(-0.0444752\pi\)
\(618\) 0 0
\(619\) 12.8995 0.518475 0.259237 0.965814i \(-0.416529\pi\)
0.259237 + 0.965814i \(0.416529\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 16.7261 + 25.2049i 0.670117 + 1.00981i
\(624\) 0 0
\(625\) 23.8246 0.952985
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 39.3598i 1.56938i
\(630\) 0 0
\(631\) 16.8826i 0.672085i 0.941847 + 0.336042i \(0.109089\pi\)
−0.941847 + 0.336042i \(0.890911\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −2.18143 −0.0865673
\(636\) 0 0
\(637\) 30.3095 + 12.7803i 1.20091 + 0.506372i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −12.2901 −0.485429 −0.242715 0.970098i \(-0.578038\pi\)
−0.242715 + 0.970098i \(0.578038\pi\)
\(642\) 0 0
\(643\) −20.2664 + 35.1024i −0.799228 + 1.38430i 0.120891 + 0.992666i \(0.461425\pi\)
−0.920119 + 0.391638i \(0.871909\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 12.3850 21.4515i 0.486905 0.843344i −0.512982 0.858400i \(-0.671459\pi\)
0.999887 + 0.0150552i \(0.00479241\pi\)
\(648\) 0 0
\(649\) −27.8634 + 16.0870i −1.09374 + 0.631469i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 18.6715 0.730671 0.365335 0.930876i \(-0.380954\pi\)
0.365335 + 0.930876i \(0.380954\pi\)
\(654\) 0 0
\(655\) 2.24123i 0.0875719i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 39.5720 22.8469i 1.54150 0.889988i 0.542761 0.839887i \(-0.317379\pi\)
0.998744 0.0501010i \(-0.0159543\pi\)
\(660\) 0 0
\(661\) 25.4400 14.6878i 0.989501 0.571289i 0.0843762 0.996434i \(-0.473110\pi\)
0.905125 + 0.425145i \(0.139777\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −0.389489 0.586930i −0.0151038 0.0227602i
\(666\) 0 0
\(667\) 1.02746 0.593203i 0.0397833 0.0229689i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −15.7653 + 27.3063i −0.608613 + 1.05415i
\(672\) 0 0
\(673\) 13.3294 + 23.0872i 0.513810 + 0.889945i 0.999872 + 0.0160205i \(0.00509972\pi\)
−0.486062 + 0.873925i \(0.661567\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 40.9678 + 23.6528i 1.57452 + 0.909050i 0.995604 + 0.0936633i \(0.0298577\pi\)
0.578917 + 0.815387i \(0.303476\pi\)
\(678\) 0 0
\(679\) 23.0176 + 34.6856i 0.883333 + 1.33111i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 23.6562 + 13.6579i 0.905178 + 0.522605i 0.878877 0.477049i \(-0.158294\pi\)
0.0263018 + 0.999654i \(0.491627\pi\)
\(684\) 0 0
\(685\) 2.42758i 0.0927532i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 50.6199 29.2254i 1.92846 1.11340i
\(690\) 0 0
\(691\) −19.8841 + 34.4403i −0.756427 + 1.31017i 0.188235 + 0.982124i \(0.439723\pi\)
−0.944662 + 0.328046i \(0.893610\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −3.49752 2.01930i −0.132669 0.0765963i
\(696\) 0 0
\(697\) 2.23545 + 3.87192i 0.0846738 + 0.146659i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 33.5286 1.26636 0.633180 0.774005i \(-0.281749\pi\)
0.633180 + 0.774005i \(0.281749\pi\)
\(702\) 0 0
\(703\) 2.30946 4.00010i 0.0871029 0.150867i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 18.5132 1.15451i 0.696259 0.0434199i
\(708\) 0 0
\(709\) 15.1763 26.2860i 0.569956 0.987193i −0.426613 0.904434i \(-0.640294\pi\)
0.996570 0.0827589i \(-0.0263732\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0.722967 0.417405i 0.0270753 0.0156319i
\(714\) 0 0
\(715\) 3.22324 + 1.86094i 0.120542 + 0.0695952i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 17.8512 + 30.9192i 0.665737 + 1.15309i 0.979085 + 0.203452i \(0.0652160\pi\)
−0.313348 + 0.949638i \(0.601451\pi\)
\(720\) 0 0
\(721\) −0.927523 14.8733i −0.0345427 0.553909i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −7.43832 12.8835i −0.276252 0.478483i
\(726\) 0 0
\(727\) 4.33546 + 7.50924i 0.160793 + 0.278502i 0.935153 0.354243i \(-0.115261\pi\)
−0.774360 + 0.632745i \(0.781928\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 39.9977 1.47937
\(732\) 0 0
\(733\) 4.04828i 0.149527i −0.997201 0.0747633i \(-0.976180\pi\)
0.997201 0.0747633i \(-0.0238201\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −12.8041 22.1774i −0.471646 0.816915i
\(738\) 0 0
\(739\) 18.5401 + 10.7042i 0.682010 + 0.393759i 0.800612 0.599183i \(-0.204508\pi\)
−0.118602 + 0.992942i \(0.537841\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −43.3251 25.0137i −1.58944 0.917665i −0.993399 0.114714i \(-0.963405\pi\)
−0.596044 0.802952i \(-0.703262\pi\)
\(744\) 0 0
\(745\) 0.299649i 0.0109783i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 8.45551 + 12.7418i 0.308958 + 0.465575i
\(750\) 0 0
\(751\) 21.3074i 0.777516i 0.921340 + 0.388758i \(0.127096\pi\)
−0.921340 + 0.388758i \(0.872904\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 3.63289 0.132214
\(756\) 0 0
\(757\) 13.2589 0.481904 0.240952 0.970537i \(-0.422540\pi\)
0.240952 + 0.970537i \(0.422540\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 40.2650i 1.45961i 0.683658 + 0.729803i \(0.260388\pi\)
−0.683658 + 0.729803i \(0.739612\pi\)
\(762\) 0 0
\(763\) −19.5628 9.72447i −0.708219 0.352049i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 53.5749i 1.93448i
\(768\) 0 0
\(769\) −5.51138 3.18199i −0.198745 0.114746i 0.397325 0.917678i \(-0.369939\pi\)
−0.596070 + 0.802932i \(0.703272\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −42.9373 24.7899i −1.54435 0.891629i −0.998557 0.0537073i \(-0.982896\pi\)
−0.545790 0.837922i \(-0.683770\pi\)
\(774\) 0 0
\(775\) −5.23395 9.06546i −0.188009 0.325641i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0.524666i 0.0187981i
\(780\) 0 0
\(781\) 4.36265 0.156108
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1.13705 1.96943i −0.0405831 0.0702919i
\(786\) 0 0
\(787\) −14.1133 24.4450i −0.503086 0.871370i −0.999994 0.00356700i \(-0.998865\pi\)
0.496908 0.867803i \(-0.334469\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −30.6828 15.2521i −1.09095 0.542303i
\(792\) 0 0
\(793\) 26.2518 + 45.4695i 0.932230 + 1.61467i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −15.6877 9.05731i −0.555688 0.320826i 0.195725 0.980659i \(-0.437294\pi\)
−0.751413 + 0.659832i \(0.770627\pi\)
\(798\) 0 0
\(799\) 19.5223 11.2712i 0.690650 0.398747i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −0.883355 + 1.53002i −0.0311729 + 0.0539931i
\(804\) 0 0
\(805\) −0.0181390 0.290868i −0.000639317 0.0102517i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.56171 2.70496i 0.0549067 0.0951012i −0.837266 0.546796i \(-0.815847\pi\)
0.892172 + 0.451695i \(0.149181\pi\)
\(810\) 0 0
\(811\) 9.66660 0.339440 0.169720 0.985492i \(-0.445714\pi\)
0.169720 + 0.985492i \(0.445714\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −2.56292 4.43911i −0.0897753 0.155495i
\(816\) 0 0
\(817\) 4.06493 + 2.34689i 0.142214 + 0.0821072i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 14.4777 25.0761i 0.505275 0.875162i −0.494706 0.869060i \(-0.664724\pi\)
0.999981 0.00610201i \(-0.00194234\pi\)
\(822\) 0 0
\(823\) −34.4646 + 19.8981i −1.20136 + 0.693605i −0.960857 0.277043i \(-0.910645\pi\)
−0.240502 + 0.970649i \(0.577312\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 37.9694i 1.32033i 0.751123 + 0.660163i \(0.229513\pi\)
−0.751123 + 0.660163i \(0.770487\pi\)
\(828\) 0 0
\(829\) 38.3383 + 22.1346i 1.33154 + 0.768766i 0.985536 0.169466i \(-0.0542042\pi\)
0.346006 + 0.938232i \(0.387538\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −52.1390 21.9848i −1.80651 0.761729i
\(834\) 0 0
\(835\) 4.09313 + 2.36317i 0.141649 + 0.0817809i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −16.3128 28.2547i −0.563182 0.975460i −0.997216 0.0745634i \(-0.976244\pi\)
0.434034 0.900896i \(-0.357090\pi\)
\(840\) 0 0
\(841\) 9.93088 17.2008i 0.342444 0.593130i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 2.20741 1.27445i 0.0759374 0.0438425i
\(846\) 0 0
\(847\) −0.499990 8.01758i −0.0171799 0.275487i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1.65495 0.955489i 0.0567311 0.0327537i
\(852\) 0 0
\(853\) 9.50254 5.48629i 0.325361 0.187847i −0.328419 0.944532i \(-0.606516\pi\)
0.653779 + 0.756685i \(0.273182\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 3.51579i 0.120097i 0.998195 + 0.0600485i \(0.0191255\pi\)
−0.998195 + 0.0600485i \(0.980874\pi\)
\(858\) 0 0
\(859\) 15.1768 0.517827 0.258913 0.965901i \(-0.416636\pi\)
0.258913 + 0.965901i \(0.416636\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 29.7041 17.1496i 1.01114 0.583781i 0.0996133 0.995026i \(-0.468239\pi\)
0.911525 + 0.411245i \(0.134906\pi\)
\(864\) 0 0
\(865\) 2.78425 4.82246i 0.0946673 0.163969i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −21.7821 + 37.7278i −0.738909 + 1.27983i
\(870\) 0 0
\(871\) −42.6419 −1.44487
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −7.35291 + 0.458540i −0.248574 + 0.0155015i
\(876\) 0 0
\(877\) 21.2826 0.718664 0.359332 0.933210i \(-0.383005\pi\)
0.359332 + 0.933210i \(0.383005\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 20.5029i 0.690761i 0.938463 + 0.345380i \(0.112250\pi\)
−0.938463 + 0.345380i \(0.887750\pi\)
\(882\) 0 0
\(883\) 39.9687i 1.34506i −0.740072 0.672528i \(-0.765209\pi\)
0.740072 0.672528i \(-0.234791\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 33.3020 1.11817 0.559085 0.829110i \(-0.311152\pi\)
0.559085 + 0.829110i \(0.311152\pi\)
\(888\) 0 0
\(889\) −20.5239 + 1.27990i −0.688348 + 0.0429266i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2.64538 0.0885243
\(894\) 0 0
\(895\) −3.49181 + 6.04798i −0.116718 + 0.202162i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −3.21505 + 5.56863i −0.107228 + 0.185724i
\(900\) 0 0
\(901\) −87.0772 + 50.2741i −2.90096 + 1.67487i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.05045 0.0681592
\(906\) 0 0
\(907\) 1.71137i 0.0568250i −0.999596 0.0284125i \(-0.990955\pi\)
0.999596 0.0284125i \(-0.00904519\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 7.22479 4.17123i 0.239368 0.138199i −0.375518 0.926815i \(-0.622535\pi\)
0.614886 + 0.788616i \(0.289202\pi\)
\(912\) 0 0
\(913\) −25.9458 + 14.9798i −0.858682 + 0.495760i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.31499 21.0865i −0.0434248 0.696337i
\(918\) 0 0
\(919\) 13.4897 7.78828i 0.444984 0.256911i −0.260726 0.965413i \(-0.583962\pi\)
0.705709 + 0.708501i \(0.250628\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 3.63226 6.29126i 0.119557 0.207079i
\(924\) 0 0
\(925\) −11.9811 20.7519i −0.393937 0.682318i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −2.11736 1.22246i −0.0694684 0.0401076i 0.464863 0.885382i \(-0.346103\pi\)
−0.534332 + 0.845275i \(0.679437\pi\)
\(930\) 0 0
\(931\) −4.00886 5.29358i −0.131385 0.173490i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −5.54468 3.20122i −0.181330 0.104691i
\(936\) 0 0
\(937\) 2.32069i 0.0758137i −0.999281 0.0379069i \(-0.987931\pi\)
0.999281 0.0379069i \(-0.0120690\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −13.7718 + 7.95114i −0.448947 + 0.259200i −0.707386 0.706828i \(-0.750125\pi\)
0.258438 + 0.966028i \(0.416792\pi\)
\(942\) 0 0
\(943\) −0.108534 + 0.187987i −0.00353437 + 0.00612171i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −31.4689 18.1686i −1.02260 0.590400i −0.107746 0.994178i \(-0.534363\pi\)
−0.914857 + 0.403778i \(0.867697\pi\)
\(948\) 0 0
\(949\) 1.47093 + 2.54773i 0.0477484 + 0.0827027i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 10.1790 0.329730 0.164865 0.986316i \(-0.447281\pi\)
0.164865 + 0.986316i \(0.447281\pi\)
\(954\) 0 0
\(955\) −1.15348 + 1.99789i −0.0373259 + 0.0646503i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1.42433 + 22.8398i 0.0459940 + 0.737536i
\(960\) 0 0
\(961\) 13.2377 22.9284i 0.427024 0.739627i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −4.75668 + 2.74627i −0.153123 + 0.0884055i
\(966\) 0 0
\(967\) −17.1689 9.91247i −0.552115 0.318764i 0.197860 0.980230i \(-0.436601\pi\)
−0.749974 + 0.661467i \(0.769934\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −12.7738 22.1249i −0.409931 0.710021i 0.584951 0.811069i \(-0.301114\pi\)
−0.994882 + 0.101048i \(0.967780\pi\)
\(972\) 0 0
\(973\) −34.0911 16.9464i −1.09291 0.543276i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −11.3985 19.7428i −0.364671 0.631629i 0.624052 0.781383i \(-0.285485\pi\)
−0.988723 + 0.149754i \(0.952152\pi\)
\(978\) 0 0
\(979\) 16.1325 + 27.9424i 0.515598 + 0.893041i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −55.9907 −1.78583 −0.892914 0.450228i \(-0.851343\pi\)
−0.892914 + 0.450228i \(0.851343\pi\)
\(984\) 0 0
\(985\) 4.60102i 0.146601i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0.970974 + 1.68178i 0.0308752 + 0.0534774i
\(990\) 0 0
\(991\) −21.3062 12.3011i −0.676814 0.390759i 0.121840 0.992550i \(-0.461121\pi\)
−0.798653 + 0.601791i \(0.794454\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −3.82534 2.20856i −0.121272 0.0700162i
\(996\) 0 0
\(997\) 40.4343i 1.28057i 0.768139 + 0.640283i \(0.221183\pi\)
−0.768139 + 0.640283i \(0.778817\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.bf.h.1711.7 24
3.2 odd 2 1008.2.bf.g.31.9 24
4.3 odd 2 3024.2.bf.g.1711.7 24
7.5 odd 6 3024.2.cz.h.1279.6 24
9.2 odd 6 1008.2.cz.h.367.8 yes 24
9.7 even 3 3024.2.cz.g.2719.6 24
12.11 even 2 1008.2.bf.h.31.4 yes 24
21.5 even 6 1008.2.cz.g.607.5 yes 24
28.19 even 6 3024.2.cz.g.1279.6 24
36.7 odd 6 3024.2.cz.h.2719.6 24
36.11 even 6 1008.2.cz.g.367.5 yes 24
63.47 even 6 1008.2.bf.h.943.4 yes 24
63.61 odd 6 3024.2.bf.g.2287.6 24
84.47 odd 6 1008.2.cz.h.607.8 yes 24
252.47 odd 6 1008.2.bf.g.943.9 yes 24
252.187 even 6 inner 3024.2.bf.h.2287.6 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.2.bf.g.31.9 24 3.2 odd 2
1008.2.bf.g.943.9 yes 24 252.47 odd 6
1008.2.bf.h.31.4 yes 24 12.11 even 2
1008.2.bf.h.943.4 yes 24 63.47 even 6
1008.2.cz.g.367.5 yes 24 36.11 even 6
1008.2.cz.g.607.5 yes 24 21.5 even 6
1008.2.cz.h.367.8 yes 24 9.2 odd 6
1008.2.cz.h.607.8 yes 24 84.47 odd 6
3024.2.bf.g.1711.7 24 4.3 odd 2
3024.2.bf.g.2287.6 24 63.61 odd 6
3024.2.bf.h.1711.7 24 1.1 even 1 trivial
3024.2.bf.h.2287.6 24 252.187 even 6 inner
3024.2.cz.g.1279.6 24 28.19 even 6
3024.2.cz.g.2719.6 24 9.7 even 3
3024.2.cz.h.1279.6 24 7.5 odd 6
3024.2.cz.h.2719.6 24 36.7 odd 6