Properties

Label 1008.2.cz.h.367.8
Level $1008$
Weight $2$
Character 1008.367
Analytic conductor $8.049$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1008,2,Mod(367,1008)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1008, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 4, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1008.367");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.cz (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 367.8
Character \(\chi\) \(=\) 1008.367
Dual form 1008.2.cz.h.607.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.908151 - 1.47488i) q^{3} +(-0.243063 - 0.140332i) q^{5} +(-2.20451 + 1.46292i) q^{7} +(-1.35052 - 2.67882i) q^{9} +(2.44393 - 1.41101i) q^{11} +(4.06955 - 2.34956i) q^{13} +(-0.427710 + 0.231045i) q^{15} +(-7.00051 - 4.04175i) q^{17} +(0.474304 + 0.821518i) q^{19} +(0.155605 + 4.57993i) q^{21} +(0.339885 + 0.196233i) q^{23} +(-2.46061 - 4.26191i) q^{25} +(-5.17741 - 0.440916i) q^{27} +(1.51148 - 2.61795i) q^{29} +2.12709 q^{31} +(0.138400 - 4.88591i) q^{33} +(0.741129 - 0.0462181i) q^{35} +(-2.43458 - 4.21681i) q^{37} +(0.230459 - 8.13584i) q^{39} +(0.478990 - 0.276545i) q^{41} +(-4.28515 - 2.47404i) q^{43} +(-0.0476630 + 0.840644i) q^{45} +2.78870 q^{47} +(2.71972 - 6.45005i) q^{49} +(-12.3186 + 6.65438i) q^{51} +(6.21935 - 10.7722i) q^{53} -0.792039 q^{55} +(1.64238 + 0.0465226i) q^{57} -11.4011 q^{59} +11.1731i q^{61} +(6.89615 + 3.92977i) q^{63} -1.31887 q^{65} +9.07446i q^{67} +(0.598086 - 0.323080i) q^{69} -1.54594i q^{71} +(-0.542172 - 0.313023i) q^{73} +(-8.52040 - 0.241352i) q^{75} +(-3.32348 + 6.68586i) q^{77} +15.4373i q^{79} +(-5.35217 + 7.23563i) q^{81} +(5.30821 - 9.19409i) q^{83} +(1.13438 + 1.96480i) q^{85} +(-2.48851 - 4.60674i) q^{87} +(9.90157 - 5.71667i) q^{89} +(-5.53414 + 11.1331i) q^{91} +(1.93172 - 3.13720i) q^{93} -0.266241i q^{95} +(13.6260 + 7.86698i) q^{97} +(-7.08043 - 4.64126i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 3 q^{3} - 3 q^{5} - 4 q^{7} + 17 q^{9} + 9 q^{11} - 3 q^{13} + 6 q^{15} - 3 q^{17} + 4 q^{19} + 13 q^{21} + 6 q^{23} + 15 q^{25} - 9 q^{27} + 18 q^{29} - 34 q^{31} - 21 q^{33} + 42 q^{35} - 3 q^{37}+ \cdots - 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.908151 1.47488i 0.524321 0.851521i
\(4\) 0 0
\(5\) −0.243063 0.140332i −0.108701 0.0627585i 0.444664 0.895698i \(-0.353323\pi\)
−0.553365 + 0.832939i \(0.686656\pi\)
\(6\) 0 0
\(7\) −2.20451 + 1.46292i −0.833226 + 0.552933i
\(8\) 0 0
\(9\) −1.35052 2.67882i −0.450175 0.892940i
\(10\) 0 0
\(11\) 2.44393 1.41101i 0.736874 0.425434i −0.0840577 0.996461i \(-0.526788\pi\)
0.820932 + 0.571027i \(0.193455\pi\)
\(12\) 0 0
\(13\) 4.06955 2.34956i 1.12869 0.651650i 0.185085 0.982722i \(-0.440744\pi\)
0.943605 + 0.331073i \(0.107411\pi\)
\(14\) 0 0
\(15\) −0.427710 + 0.231045i −0.110434 + 0.0596555i
\(16\) 0 0
\(17\) −7.00051 4.04175i −1.69787 0.980268i −0.947774 0.318944i \(-0.896672\pi\)
−0.750100 0.661324i \(-0.769995\pi\)
\(18\) 0 0
\(19\) 0.474304 + 0.821518i 0.108813 + 0.188469i 0.915290 0.402797i \(-0.131962\pi\)
−0.806477 + 0.591266i \(0.798628\pi\)
\(20\) 0 0
\(21\) 0.155605 + 4.57993i 0.0339558 + 0.999423i
\(22\) 0 0
\(23\) 0.339885 + 0.196233i 0.0708710 + 0.0409174i 0.535017 0.844841i \(-0.320305\pi\)
−0.464146 + 0.885759i \(0.653639\pi\)
\(24\) 0 0
\(25\) −2.46061 4.26191i −0.492123 0.852382i
\(26\) 0 0
\(27\) −5.17741 0.440916i −0.996393 0.0848543i
\(28\) 0 0
\(29\) 1.51148 2.61795i 0.280674 0.486142i −0.690877 0.722973i \(-0.742775\pi\)
0.971551 + 0.236831i \(0.0761086\pi\)
\(30\) 0 0
\(31\) 2.12709 0.382037 0.191018 0.981586i \(-0.438821\pi\)
0.191018 + 0.981586i \(0.438821\pi\)
\(32\) 0 0
\(33\) 0.138400 4.88591i 0.0240924 0.850528i
\(34\) 0 0
\(35\) 0.741129 0.0462181i 0.125274 0.00781229i
\(36\) 0 0
\(37\) −2.43458 4.21681i −0.400242 0.693240i 0.593513 0.804825i \(-0.297741\pi\)
−0.993755 + 0.111585i \(0.964407\pi\)
\(38\) 0 0
\(39\) 0.230459 8.13584i 0.0369030 1.30278i
\(40\) 0 0
\(41\) 0.478990 0.276545i 0.0748057 0.0431891i −0.462131 0.886812i \(-0.652915\pi\)
0.536936 + 0.843623i \(0.319582\pi\)
\(42\) 0 0
\(43\) −4.28515 2.47404i −0.653480 0.377287i 0.136308 0.990666i \(-0.456476\pi\)
−0.789788 + 0.613380i \(0.789810\pi\)
\(44\) 0 0
\(45\) −0.0476630 + 0.840644i −0.00710519 + 0.125316i
\(46\) 0 0
\(47\) 2.78870 0.406773 0.203387 0.979098i \(-0.434805\pi\)
0.203387 + 0.979098i \(0.434805\pi\)
\(48\) 0 0
\(49\) 2.71972 6.45005i 0.388531 0.921436i
\(50\) 0 0
\(51\) −12.3186 + 6.65438i −1.72495 + 0.931800i
\(52\) 0 0
\(53\) 6.21935 10.7722i 0.854293 1.47968i −0.0230067 0.999735i \(-0.507324\pi\)
0.877300 0.479943i \(-0.159343\pi\)
\(54\) 0 0
\(55\) −0.792039 −0.106799
\(56\) 0 0
\(57\) 1.64238 + 0.0465226i 0.217538 + 0.00616207i
\(58\) 0 0
\(59\) −11.4011 −1.48429 −0.742146 0.670238i \(-0.766192\pi\)
−0.742146 + 0.670238i \(0.766192\pi\)
\(60\) 0 0
\(61\) 11.1731i 1.43057i 0.698833 + 0.715284i \(0.253703\pi\)
−0.698833 + 0.715284i \(0.746297\pi\)
\(62\) 0 0
\(63\) 6.89615 + 3.92977i 0.868833 + 0.495105i
\(64\) 0 0
\(65\) −1.31887 −0.163586
\(66\) 0 0
\(67\) 9.07446i 1.10862i 0.832310 + 0.554311i \(0.187018\pi\)
−0.832310 + 0.554311i \(0.812982\pi\)
\(68\) 0 0
\(69\) 0.598086 0.323080i 0.0720011 0.0388943i
\(70\) 0 0
\(71\) 1.54594i 0.183469i −0.995784 0.0917344i \(-0.970759\pi\)
0.995784 0.0917344i \(-0.0292411\pi\)
\(72\) 0 0
\(73\) −0.542172 0.313023i −0.0634564 0.0366366i 0.467936 0.883762i \(-0.344998\pi\)
−0.531393 + 0.847126i \(0.678331\pi\)
\(74\) 0 0
\(75\) −8.52040 0.241352i −0.983851 0.0278689i
\(76\) 0 0
\(77\) −3.32348 + 6.68586i −0.378746 + 0.761925i
\(78\) 0 0
\(79\) 15.4373i 1.73683i 0.495835 + 0.868417i \(0.334862\pi\)
−0.495835 + 0.868417i \(0.665138\pi\)
\(80\) 0 0
\(81\) −5.35217 + 7.23563i −0.594685 + 0.803959i
\(82\) 0 0
\(83\) 5.30821 9.19409i 0.582652 1.00918i −0.412512 0.910952i \(-0.635348\pi\)
0.995164 0.0982303i \(-0.0313182\pi\)
\(84\) 0 0
\(85\) 1.13438 + 1.96480i 0.123040 + 0.213112i
\(86\) 0 0
\(87\) −2.48851 4.60674i −0.266797 0.493894i
\(88\) 0 0
\(89\) 9.90157 5.71667i 1.04956 0.605966i 0.127037 0.991898i \(-0.459453\pi\)
0.922527 + 0.385932i \(0.126120\pi\)
\(90\) 0 0
\(91\) −5.53414 + 11.1331i −0.580136 + 1.16706i
\(92\) 0 0
\(93\) 1.93172 3.13720i 0.200310 0.325312i
\(94\) 0 0
\(95\) 0.266241i 0.0273157i
\(96\) 0 0
\(97\) 13.6260 + 7.86698i 1.38351 + 0.798770i 0.992573 0.121647i \(-0.0388175\pi\)
0.390937 + 0.920417i \(0.372151\pi\)
\(98\) 0 0
\(99\) −7.08043 4.64126i −0.711610 0.466465i
\(100\) 0 0
\(101\) −6.07162 + 3.50545i −0.604149 + 0.348806i −0.770672 0.637232i \(-0.780079\pi\)
0.166523 + 0.986038i \(0.446746\pi\)
\(102\) 0 0
\(103\) −2.81624 + 4.87787i −0.277493 + 0.480631i −0.970761 0.240048i \(-0.922837\pi\)
0.693268 + 0.720680i \(0.256170\pi\)
\(104\) 0 0
\(105\) 0.604891 1.13505i 0.0590313 0.110769i
\(106\) 0 0
\(107\) 5.00552 2.88994i 0.483902 0.279381i −0.238139 0.971231i \(-0.576537\pi\)
0.722041 + 0.691850i \(0.243204\pi\)
\(108\) 0 0
\(109\) 4.12859 7.15092i 0.395447 0.684934i −0.597711 0.801712i \(-0.703923\pi\)
0.993158 + 0.116777i \(0.0372564\pi\)
\(110\) 0 0
\(111\) −8.43025 0.238798i −0.800164 0.0226657i
\(112\) 0 0
\(113\) −6.47539 11.2157i −0.609154 1.05508i −0.991380 0.131016i \(-0.958176\pi\)
0.382227 0.924069i \(-0.375157\pi\)
\(114\) 0 0
\(115\) −0.0550756 0.0953938i −0.00513583 0.00889552i
\(116\) 0 0
\(117\) −11.7901 7.72847i −1.08999 0.714497i
\(118\) 0 0
\(119\) 21.3455 1.33114i 1.95673 0.122025i
\(120\) 0 0
\(121\) −1.51812 + 2.62947i −0.138011 + 0.239043i
\(122\) 0 0
\(123\) 0.0271252 0.957596i 0.00244580 0.0863435i
\(124\) 0 0
\(125\) 2.78454i 0.249057i
\(126\) 0 0
\(127\) 7.77236i 0.689685i −0.938660 0.344843i \(-0.887932\pi\)
0.938660 0.344843i \(-0.112068\pi\)
\(128\) 0 0
\(129\) −7.54046 + 4.07328i −0.663901 + 0.358632i
\(130\) 0 0
\(131\) 3.99271 6.91558i 0.348845 0.604217i −0.637200 0.770699i \(-0.719907\pi\)
0.986045 + 0.166482i \(0.0532407\pi\)
\(132\) 0 0
\(133\) −2.24742 1.11717i −0.194876 0.0968713i
\(134\) 0 0
\(135\) 1.19656 + 0.833728i 0.102984 + 0.0717559i
\(136\) 0 0
\(137\) −4.32470 7.49061i −0.369484 0.639966i 0.620001 0.784601i \(-0.287132\pi\)
−0.989485 + 0.144636i \(0.953799\pi\)
\(138\) 0 0
\(139\) 7.19469 + 12.4616i 0.610246 + 1.05698i 0.991199 + 0.132383i \(0.0422627\pi\)
−0.380953 + 0.924595i \(0.624404\pi\)
\(140\) 0 0
\(141\) 2.53256 4.11299i 0.213280 0.346376i
\(142\) 0 0
\(143\) 6.63048 11.4843i 0.554468 0.960367i
\(144\) 0 0
\(145\) −0.734767 + 0.424218i −0.0610191 + 0.0352294i
\(146\) 0 0
\(147\) −7.04312 9.86886i −0.580907 0.813970i
\(148\) 0 0
\(149\) 0.533820 0.924603i 0.0437322 0.0757464i −0.843331 0.537395i \(-0.819408\pi\)
0.887063 + 0.461648i \(0.152742\pi\)
\(150\) 0 0
\(151\) 11.2097 6.47194i 0.912235 0.526679i 0.0310854 0.999517i \(-0.490104\pi\)
0.881150 + 0.472838i \(0.156770\pi\)
\(152\) 0 0
\(153\) −1.37276 + 24.2116i −0.110981 + 1.95739i
\(154\) 0 0
\(155\) −0.517016 0.298500i −0.0415278 0.0239761i
\(156\) 0 0
\(157\) 8.10255i 0.646654i 0.946287 + 0.323327i \(0.104801\pi\)
−0.946287 + 0.323327i \(0.895199\pi\)
\(158\) 0 0
\(159\) −10.2396 18.9556i −0.812053 1.50327i
\(160\) 0 0
\(161\) −1.03635 + 0.0646288i −0.0816761 + 0.00509346i
\(162\) 0 0
\(163\) 15.8164 9.13162i 1.23884 0.715244i 0.269982 0.962865i \(-0.412982\pi\)
0.968857 + 0.247621i \(0.0796489\pi\)
\(164\) 0 0
\(165\) −0.719291 + 1.16816i −0.0559967 + 0.0909411i
\(166\) 0 0
\(167\) 8.41991 + 14.5837i 0.651553 + 1.12852i 0.982746 + 0.184959i \(0.0592153\pi\)
−0.331194 + 0.943563i \(0.607451\pi\)
\(168\) 0 0
\(169\) 4.54083 7.86496i 0.349295 0.604997i
\(170\) 0 0
\(171\) 1.56014 2.38006i 0.119307 0.182007i
\(172\) 0 0
\(173\) 19.8404i 1.50844i 0.656623 + 0.754219i \(0.271984\pi\)
−0.656623 + 0.754219i \(0.728016\pi\)
\(174\) 0 0
\(175\) 11.6593 + 5.79573i 0.881359 + 0.438116i
\(176\) 0 0
\(177\) −10.3539 + 16.8152i −0.778245 + 1.26391i
\(178\) 0 0
\(179\) 21.5488 + 12.4412i 1.61063 + 0.929899i 0.989224 + 0.146413i \(0.0467728\pi\)
0.621409 + 0.783486i \(0.286561\pi\)
\(180\) 0 0
\(181\) 7.30569i 0.543027i 0.962435 + 0.271514i \(0.0875242\pi\)
−0.962435 + 0.271514i \(0.912476\pi\)
\(182\) 0 0
\(183\) 16.4789 + 10.1469i 1.21816 + 0.750077i
\(184\) 0 0
\(185\) 1.36660i 0.100474i
\(186\) 0 0
\(187\) −22.8117 −1.66816
\(188\) 0 0
\(189\) 12.0587 6.60215i 0.877139 0.480236i
\(190\) 0 0
\(191\) 8.21966i 0.594754i −0.954760 0.297377i \(-0.903888\pi\)
0.954760 0.297377i \(-0.0961118\pi\)
\(192\) 0 0
\(193\) 19.5697 1.40866 0.704331 0.709872i \(-0.251247\pi\)
0.704331 + 0.709872i \(0.251247\pi\)
\(194\) 0 0
\(195\) −1.19774 + 1.94518i −0.0857717 + 0.139297i
\(196\) 0 0
\(197\) 16.3933 1.16797 0.583987 0.811763i \(-0.301492\pi\)
0.583987 + 0.811763i \(0.301492\pi\)
\(198\) 0 0
\(199\) 7.86905 13.6296i 0.557822 0.966176i −0.439856 0.898068i \(-0.644971\pi\)
0.997678 0.0681077i \(-0.0216961\pi\)
\(200\) 0 0
\(201\) 13.3837 + 8.24098i 0.944015 + 0.581274i
\(202\) 0 0
\(203\) 0.497801 + 7.98248i 0.0349388 + 0.560260i
\(204\) 0 0
\(205\) −0.155233 −0.0108419
\(206\) 0 0
\(207\) 0.0666493 1.17551i 0.00463245 0.0817035i
\(208\) 0 0
\(209\) 2.31833 + 1.33849i 0.160363 + 0.0925854i
\(210\) 0 0
\(211\) −7.41442 + 4.28072i −0.510430 + 0.294697i −0.733010 0.680218i \(-0.761885\pi\)
0.222581 + 0.974914i \(0.428552\pi\)
\(212\) 0 0
\(213\) −2.28006 1.40394i −0.156227 0.0961965i
\(214\) 0 0
\(215\) 0.694374 + 1.20269i 0.0473559 + 0.0820229i
\(216\) 0 0
\(217\) −4.68919 + 3.11177i −0.318323 + 0.211241i
\(218\) 0 0
\(219\) −0.954044 + 0.515365i −0.0644683 + 0.0348251i
\(220\) 0 0
\(221\) −37.9853 −2.55517
\(222\) 0 0
\(223\) −9.63167 + 16.6825i −0.644984 + 1.11715i 0.339321 + 0.940671i \(0.389803\pi\)
−0.984305 + 0.176475i \(0.943531\pi\)
\(224\) 0 0
\(225\) −8.09377 + 12.3474i −0.539585 + 0.823157i
\(226\) 0 0
\(227\) −10.3200 17.8747i −0.684960 1.18639i −0.973449 0.228902i \(-0.926486\pi\)
0.288489 0.957483i \(-0.406847\pi\)
\(228\) 0 0
\(229\) −18.3554 10.5975i −1.21296 0.700301i −0.249555 0.968361i \(-0.580284\pi\)
−0.963402 + 0.268060i \(0.913618\pi\)
\(230\) 0 0
\(231\) 6.84260 + 10.9735i 0.450210 + 0.722003i
\(232\) 0 0
\(233\) −7.78510 13.4842i −0.510019 0.883378i −0.999933 0.0116076i \(-0.996305\pi\)
0.489914 0.871771i \(-0.337028\pi\)
\(234\) 0 0
\(235\) −0.677828 0.391344i −0.0442167 0.0255285i
\(236\) 0 0
\(237\) 22.7681 + 14.0194i 1.47895 + 0.910658i
\(238\) 0 0
\(239\) −6.36686 + 3.67591i −0.411838 + 0.237775i −0.691579 0.722301i \(-0.743085\pi\)
0.279741 + 0.960075i \(0.409751\pi\)
\(240\) 0 0
\(241\) 4.98346 2.87720i 0.321013 0.185337i −0.330831 0.943690i \(-0.607329\pi\)
0.651844 + 0.758353i \(0.273996\pi\)
\(242\) 0 0
\(243\) 5.81109 + 14.4648i 0.372781 + 0.927919i
\(244\) 0 0
\(245\) −1.56621 + 1.18610i −0.100062 + 0.0757773i
\(246\) 0 0
\(247\) 3.86041 + 2.22881i 0.245632 + 0.141816i
\(248\) 0 0
\(249\) −8.73950 16.1786i −0.553843 1.02528i
\(250\) 0 0
\(251\) −21.9997 −1.38861 −0.694305 0.719681i \(-0.744288\pi\)
−0.694305 + 0.719681i \(0.744288\pi\)
\(252\) 0 0
\(253\) 1.10754 0.0696306
\(254\) 0 0
\(255\) 3.92802 + 0.111267i 0.245982 + 0.00696778i
\(256\) 0 0
\(257\) −1.26062 0.727818i −0.0786351 0.0454000i 0.460167 0.887832i \(-0.347790\pi\)
−0.538802 + 0.842432i \(0.681123\pi\)
\(258\) 0 0
\(259\) 11.5359 + 5.73440i 0.716807 + 0.356318i
\(260\) 0 0
\(261\) −9.05432 0.513364i −0.560448 0.0317764i
\(262\) 0 0
\(263\) 18.3962 10.6211i 1.13436 0.654922i 0.189331 0.981913i \(-0.439368\pi\)
0.945028 + 0.326991i \(0.106035\pi\)
\(264\) 0 0
\(265\) −3.02338 + 1.74555i −0.185725 + 0.107228i
\(266\) 0 0
\(267\) 0.560726 19.7952i 0.0343159 1.21145i
\(268\) 0 0
\(269\) 17.4754 + 10.0894i 1.06549 + 0.615162i 0.926946 0.375194i \(-0.122424\pi\)
0.138546 + 0.990356i \(0.455757\pi\)
\(270\) 0 0
\(271\) 8.69232 + 15.0555i 0.528021 + 0.914559i 0.999466 + 0.0326639i \(0.0103991\pi\)
−0.471445 + 0.881895i \(0.656268\pi\)
\(272\) 0 0
\(273\) 11.3941 + 18.2727i 0.689600 + 1.10591i
\(274\) 0 0
\(275\) −12.0272 6.94388i −0.725265 0.418732i
\(276\) 0 0
\(277\) −0.566878 0.981861i −0.0340604 0.0589943i 0.848493 0.529207i \(-0.177511\pi\)
−0.882553 + 0.470213i \(0.844177\pi\)
\(278\) 0 0
\(279\) −2.87269 5.69810i −0.171983 0.341136i
\(280\) 0 0
\(281\) −6.37564 + 11.0429i −0.380339 + 0.658766i −0.991111 0.133040i \(-0.957526\pi\)
0.610772 + 0.791807i \(0.290859\pi\)
\(282\) 0 0
\(283\) −6.77001 −0.402435 −0.201218 0.979547i \(-0.564490\pi\)
−0.201218 + 0.979547i \(0.564490\pi\)
\(284\) 0 0
\(285\) −0.392672 0.241787i −0.0232599 0.0143222i
\(286\) 0 0
\(287\) −0.651374 + 1.31037i −0.0384494 + 0.0773488i
\(288\) 0 0
\(289\) 24.1715 + 41.8662i 1.42185 + 2.46272i
\(290\) 0 0
\(291\) 23.9773 12.9523i 1.40557 0.759276i
\(292\) 0 0
\(293\) −10.5242 + 6.07616i −0.614831 + 0.354973i −0.774854 0.632140i \(-0.782177\pi\)
0.160023 + 0.987113i \(0.448843\pi\)
\(294\) 0 0
\(295\) 2.77117 + 1.59994i 0.161344 + 0.0931519i
\(296\) 0 0
\(297\) −13.2754 + 6.22779i −0.770316 + 0.361373i
\(298\) 0 0
\(299\) 1.84424 0.106655
\(300\) 0 0
\(301\) 13.0660 0.814817i 0.753111 0.0469653i
\(302\) 0 0
\(303\) −0.343836 + 12.1384i −0.0197529 + 0.697332i
\(304\) 0 0
\(305\) 1.56795 2.71576i 0.0897804 0.155504i
\(306\) 0 0
\(307\) −17.3006 −0.987396 −0.493698 0.869634i \(-0.664355\pi\)
−0.493698 + 0.869634i \(0.664355\pi\)
\(308\) 0 0
\(309\) 4.63669 + 8.58346i 0.263772 + 0.488296i
\(310\) 0 0
\(311\) 26.4759 1.50131 0.750655 0.660694i \(-0.229738\pi\)
0.750655 + 0.660694i \(0.229738\pi\)
\(312\) 0 0
\(313\) 4.46734i 0.252509i 0.991998 + 0.126255i \(0.0402956\pi\)
−0.991998 + 0.126255i \(0.959704\pi\)
\(314\) 0 0
\(315\) −1.12472 1.92293i −0.0633710 0.108345i
\(316\) 0 0
\(317\) 29.4033 1.65146 0.825728 0.564069i \(-0.190765\pi\)
0.825728 + 0.564069i \(0.190765\pi\)
\(318\) 0 0
\(319\) 8.53081i 0.477634i
\(320\) 0 0
\(321\) 0.283463 10.0070i 0.0158213 0.558538i
\(322\) 0 0
\(323\) 7.66807i 0.426663i
\(324\) 0 0
\(325\) −20.0272 11.5627i −1.11091 0.641383i
\(326\) 0 0
\(327\) −6.79735 12.5833i −0.375895 0.695857i
\(328\) 0 0
\(329\) −6.14771 + 4.07965i −0.338934 + 0.224918i
\(330\) 0 0
\(331\) 0.981836i 0.0539666i 0.999636 + 0.0269833i \(0.00859009\pi\)
−0.999636 + 0.0269833i \(0.991410\pi\)
\(332\) 0 0
\(333\) −8.00813 + 12.2167i −0.438843 + 0.669472i
\(334\) 0 0
\(335\) 1.27344 2.20566i 0.0695755 0.120508i
\(336\) 0 0
\(337\) 5.58390 + 9.67160i 0.304174 + 0.526846i 0.977077 0.212885i \(-0.0682861\pi\)
−0.672903 + 0.739731i \(0.734953\pi\)
\(338\) 0 0
\(339\) −22.4224 0.635146i −1.21782 0.0344964i
\(340\) 0 0
\(341\) 5.19847 3.00134i 0.281513 0.162532i
\(342\) 0 0
\(343\) 3.44029 + 18.1979i 0.185758 + 0.982596i
\(344\) 0 0
\(345\) −0.190711 0.00540215i −0.0102675 0.000290842i
\(346\) 0 0
\(347\) 8.78830i 0.471781i 0.971780 + 0.235890i \(0.0758006\pi\)
−0.971780 + 0.235890i \(0.924199\pi\)
\(348\) 0 0
\(349\) −18.2265 10.5231i −0.975644 0.563288i −0.0746915 0.997207i \(-0.523797\pi\)
−0.900952 + 0.433919i \(0.857131\pi\)
\(350\) 0 0
\(351\) −22.1057 + 10.3703i −1.17992 + 0.553525i
\(352\) 0 0
\(353\) −2.28872 + 1.32139i −0.121816 + 0.0703307i −0.559670 0.828716i \(-0.689072\pi\)
0.437854 + 0.899046i \(0.355739\pi\)
\(354\) 0 0
\(355\) −0.216945 + 0.375759i −0.0115142 + 0.0199432i
\(356\) 0 0
\(357\) 17.4216 32.6908i 0.922050 1.73018i
\(358\) 0 0
\(359\) −20.5571 + 11.8687i −1.08496 + 0.626405i −0.932231 0.361863i \(-0.882141\pi\)
−0.152733 + 0.988267i \(0.548808\pi\)
\(360\) 0 0
\(361\) 9.05007 15.6752i 0.476320 0.825010i
\(362\) 0 0
\(363\) 2.49946 + 4.62700i 0.131187 + 0.242854i
\(364\) 0 0
\(365\) 0.0878545 + 0.152168i 0.00459852 + 0.00796486i
\(366\) 0 0
\(367\) −15.3410 26.5714i −0.800793 1.38701i −0.919095 0.394036i \(-0.871079\pi\)
0.118303 0.992978i \(-0.462255\pi\)
\(368\) 0 0
\(369\) −1.38770 0.909648i −0.0722409 0.0473544i
\(370\) 0 0
\(371\) 2.04833 + 32.8459i 0.106344 + 1.70527i
\(372\) 0 0
\(373\) −3.29461 + 5.70642i −0.170588 + 0.295467i −0.938626 0.344937i \(-0.887900\pi\)
0.768037 + 0.640405i \(0.221233\pi\)
\(374\) 0 0
\(375\) 4.10685 + 2.52878i 0.212077 + 0.130586i
\(376\) 0 0
\(377\) 14.2052i 0.731605i
\(378\) 0 0
\(379\) 0.316910i 0.0162786i 0.999967 + 0.00813930i \(0.00259085\pi\)
−0.999967 + 0.00813930i \(0.997409\pi\)
\(380\) 0 0
\(381\) −11.4633 7.05847i −0.587281 0.361617i
\(382\) 0 0
\(383\) 1.84855 3.20179i 0.0944567 0.163604i −0.814925 0.579566i \(-0.803222\pi\)
0.909382 + 0.415963i \(0.136555\pi\)
\(384\) 0 0
\(385\) 1.74606 1.15869i 0.0889873 0.0590524i
\(386\) 0 0
\(387\) −0.840291 + 14.8204i −0.0427144 + 0.753364i
\(388\) 0 0
\(389\) 4.29814 + 7.44460i 0.217925 + 0.377456i 0.954173 0.299255i \(-0.0967380\pi\)
−0.736249 + 0.676711i \(0.763405\pi\)
\(390\) 0 0
\(391\) −1.58625 2.74746i −0.0802200 0.138945i
\(392\) 0 0
\(393\) −6.57365 12.1691i −0.331597 0.613852i
\(394\) 0 0
\(395\) 2.16635 3.75224i 0.109001 0.188795i
\(396\) 0 0
\(397\) −10.9255 + 6.30783i −0.548334 + 0.316581i −0.748450 0.663192i \(-0.769201\pi\)
0.200116 + 0.979772i \(0.435868\pi\)
\(398\) 0 0
\(399\) −3.68870 + 2.30011i −0.184666 + 0.115150i
\(400\) 0 0
\(401\) 13.0646 22.6285i 0.652414 1.13001i −0.330121 0.943939i \(-0.607090\pi\)
0.982535 0.186076i \(-0.0595771\pi\)
\(402\) 0 0
\(403\) 8.65631 4.99772i 0.431201 0.248954i
\(404\) 0 0
\(405\) 2.31630 1.00763i 0.115098 0.0500695i
\(406\) 0 0
\(407\) −11.8999 6.87041i −0.589856 0.340554i
\(408\) 0 0
\(409\) 0.288440i 0.0142624i −0.999975 0.00713121i \(-0.997730\pi\)
0.999975 0.00713121i \(-0.00226995\pi\)
\(410\) 0 0
\(411\) −14.9752 0.424194i −0.738673 0.0209239i
\(412\) 0 0
\(413\) 25.1337 16.6789i 1.23675 0.820713i
\(414\) 0 0
\(415\) −2.58046 + 1.48983i −0.126670 + 0.0731327i
\(416\) 0 0
\(417\) 24.9132 + 0.705700i 1.22000 + 0.0345583i
\(418\) 0 0
\(419\) 9.56824 + 16.5727i 0.467439 + 0.809629i 0.999308 0.0371983i \(-0.0118433\pi\)
−0.531869 + 0.846827i \(0.678510\pi\)
\(420\) 0 0
\(421\) −11.5319 + 19.9738i −0.562030 + 0.973465i 0.435289 + 0.900291i \(0.356646\pi\)
−0.997319 + 0.0731740i \(0.976687\pi\)
\(422\) 0 0
\(423\) −3.76621 7.47042i −0.183119 0.363224i
\(424\) 0 0
\(425\) 39.7807i 1.92965i
\(426\) 0 0
\(427\) −16.3454 24.6312i −0.791008 1.19199i
\(428\) 0 0
\(429\) −10.9165 20.2086i −0.527053 0.975682i
\(430\) 0 0
\(431\) −13.2196 7.63235i −0.636766 0.367637i 0.146601 0.989196i \(-0.453167\pi\)
−0.783368 + 0.621558i \(0.786500\pi\)
\(432\) 0 0
\(433\) 24.5275i 1.17871i −0.807873 0.589357i \(-0.799381\pi\)
0.807873 0.589357i \(-0.200619\pi\)
\(434\) 0 0
\(435\) −0.0416099 + 1.46895i −0.00199504 + 0.0704305i
\(436\) 0 0
\(437\) 0.372296i 0.0178093i
\(438\) 0 0
\(439\) 18.2801 0.872460 0.436230 0.899835i \(-0.356313\pi\)
0.436230 + 0.899835i \(0.356313\pi\)
\(440\) 0 0
\(441\) −20.9516 + 1.42532i −0.997694 + 0.0678724i
\(442\) 0 0
\(443\) 5.21155i 0.247608i 0.992307 + 0.123804i \(0.0395094\pi\)
−0.992307 + 0.123804i \(0.960491\pi\)
\(444\) 0 0
\(445\) −3.20894 −0.152118
\(446\) 0 0
\(447\) −0.878887 1.62700i −0.0415699 0.0769543i
\(448\) 0 0
\(449\) −9.38031 −0.442684 −0.221342 0.975196i \(-0.571044\pi\)
−0.221342 + 0.975196i \(0.571044\pi\)
\(450\) 0 0
\(451\) 0.780414 1.35172i 0.0367482 0.0636498i
\(452\) 0 0
\(453\) 0.634808 22.4105i 0.0298259 1.05294i
\(454\) 0 0
\(455\) 2.90747 1.92941i 0.136304 0.0904522i
\(456\) 0 0
\(457\) 29.3621 1.37350 0.686749 0.726894i \(-0.259037\pi\)
0.686749 + 0.726894i \(0.259037\pi\)
\(458\) 0 0
\(459\) 34.4625 + 24.0124i 1.60857 + 1.12080i
\(460\) 0 0
\(461\) −1.10606 0.638584i −0.0515144 0.0297418i 0.474022 0.880513i \(-0.342802\pi\)
−0.525536 + 0.850771i \(0.676135\pi\)
\(462\) 0 0
\(463\) 23.8988 13.7980i 1.11067 0.641247i 0.171669 0.985155i \(-0.445084\pi\)
0.939004 + 0.343907i \(0.111751\pi\)
\(464\) 0 0
\(465\) −0.909779 + 0.491453i −0.0421900 + 0.0227906i
\(466\) 0 0
\(467\) −5.00656 8.67162i −0.231676 0.401275i 0.726625 0.687034i \(-0.241088\pi\)
−0.958301 + 0.285759i \(0.907754\pi\)
\(468\) 0 0
\(469\) −13.2752 20.0047i −0.612993 0.923733i
\(470\) 0 0
\(471\) 11.9503 + 7.35834i 0.550639 + 0.339054i
\(472\) 0 0
\(473\) −13.9635 −0.642043
\(474\) 0 0
\(475\) 2.33416 4.04288i 0.107098 0.185500i
\(476\) 0 0
\(477\) −37.2562 2.11236i −1.70585 0.0967185i
\(478\) 0 0
\(479\) −7.39474 12.8081i −0.337874 0.585216i 0.646158 0.763203i \(-0.276375\pi\)
−0.984033 + 0.177988i \(0.943041\pi\)
\(480\) 0 0
\(481\) −19.8153 11.4404i −0.903499 0.521636i
\(482\) 0 0
\(483\) −0.845846 + 1.58719i −0.0384873 + 0.0722195i
\(484\) 0 0
\(485\) −2.20798 3.82434i −0.100259 0.173654i
\(486\) 0 0
\(487\) −12.8101 7.39589i −0.580479 0.335140i 0.180845 0.983512i \(-0.442117\pi\)
−0.761324 + 0.648372i \(0.775450\pi\)
\(488\) 0 0
\(489\) 0.895686 31.6202i 0.0405043 1.42991i
\(490\) 0 0
\(491\) −12.5410 + 7.24053i −0.565966 + 0.326760i −0.755536 0.655107i \(-0.772624\pi\)
0.189571 + 0.981867i \(0.439290\pi\)
\(492\) 0 0
\(493\) −21.1622 + 12.2180i −0.953099 + 0.550272i
\(494\) 0 0
\(495\) 1.06967 + 2.12173i 0.0480780 + 0.0953647i
\(496\) 0 0
\(497\) 2.26158 + 3.40803i 0.101446 + 0.152871i
\(498\) 0 0
\(499\) 7.52679 + 4.34559i 0.336945 + 0.194536i 0.658920 0.752213i \(-0.271013\pi\)
−0.321975 + 0.946748i \(0.604347\pi\)
\(500\) 0 0
\(501\) 29.1557 + 0.825877i 1.30258 + 0.0368975i
\(502\) 0 0
\(503\) −40.3239 −1.79795 −0.898977 0.437995i \(-0.855689\pi\)
−0.898977 + 0.437995i \(0.855689\pi\)
\(504\) 0 0
\(505\) 1.96771 0.0875621
\(506\) 0 0
\(507\) −7.47608 13.8397i −0.332024 0.614644i
\(508\) 0 0
\(509\) 2.92593 + 1.68929i 0.129690 + 0.0748764i 0.563441 0.826156i \(-0.309477\pi\)
−0.433752 + 0.901033i \(0.642810\pi\)
\(510\) 0 0
\(511\) 1.65315 0.103093i 0.0731311 0.00456058i
\(512\) 0 0
\(513\) −2.09345 4.46247i −0.0924279 0.197023i
\(514\) 0 0
\(515\) 1.36905 0.790420i 0.0603274 0.0348300i
\(516\) 0 0
\(517\) 6.81539 3.93487i 0.299741 0.173055i
\(518\) 0 0
\(519\) 29.2621 + 18.0181i 1.28447 + 0.790906i
\(520\) 0 0
\(521\) −34.6315 19.9945i −1.51723 0.875976i −0.999795 0.0202566i \(-0.993552\pi\)
−0.517440 0.855719i \(-0.673115\pi\)
\(522\) 0 0
\(523\) −6.43351 11.1432i −0.281318 0.487257i 0.690392 0.723436i \(-0.257438\pi\)
−0.971710 + 0.236179i \(0.924105\pi\)
\(524\) 0 0
\(525\) 19.1364 11.9326i 0.835180 0.520782i
\(526\) 0 0
\(527\) −14.8907 8.59716i −0.648650 0.374498i
\(528\) 0 0
\(529\) −11.4230 19.7852i −0.496652 0.860226i
\(530\) 0 0
\(531\) 15.3974 + 30.5414i 0.668191 + 1.32538i
\(532\) 0 0
\(533\) 1.29952 2.25083i 0.0562883 0.0974942i
\(534\) 0 0
\(535\) −1.62221 −0.0701341
\(536\) 0 0
\(537\) 37.9188 20.4833i 1.63632 0.883921i
\(538\) 0 0
\(539\) −2.45425 19.6010i −0.105712 0.844276i
\(540\) 0 0
\(541\) −2.79138 4.83481i −0.120011 0.207865i 0.799761 0.600319i \(-0.204960\pi\)
−0.919772 + 0.392454i \(0.871626\pi\)
\(542\) 0 0
\(543\) 10.7750 + 6.63467i 0.462399 + 0.284721i
\(544\) 0 0
\(545\) −2.00701 + 1.15875i −0.0859709 + 0.0496353i
\(546\) 0 0
\(547\) 9.37486 + 5.41258i 0.400840 + 0.231425i 0.686846 0.726803i \(-0.258994\pi\)
−0.286006 + 0.958228i \(0.592328\pi\)
\(548\) 0 0
\(549\) 29.9307 15.0895i 1.27741 0.644006i
\(550\) 0 0
\(551\) 2.86760 0.122164
\(552\) 0 0
\(553\) −22.5836 34.0317i −0.960352 1.44717i
\(554\) 0 0
\(555\) 2.01557 + 1.24108i 0.0855561 + 0.0526809i
\(556\) 0 0
\(557\) 8.38879 14.5298i 0.355445 0.615648i −0.631749 0.775173i \(-0.717663\pi\)
0.987194 + 0.159525i \(0.0509961\pi\)
\(558\) 0 0
\(559\) −23.2515 −0.983436
\(560\) 0 0
\(561\) −20.7165 + 33.6445i −0.874651 + 1.42047i
\(562\) 0 0
\(563\) −28.6721 −1.20838 −0.604192 0.796839i \(-0.706504\pi\)
−0.604192 + 0.796839i \(0.706504\pi\)
\(564\) 0 0
\(565\) 3.63483i 0.152918i
\(566\) 0 0
\(567\) 1.21373 23.7808i 0.0509720 0.998700i
\(568\) 0 0
\(569\) 33.2571 1.39421 0.697106 0.716968i \(-0.254471\pi\)
0.697106 + 0.716968i \(0.254471\pi\)
\(570\) 0 0
\(571\) 32.5982i 1.36419i −0.731262 0.682097i \(-0.761068\pi\)
0.731262 0.682097i \(-0.238932\pi\)
\(572\) 0 0
\(573\) −12.1230 7.46469i −0.506445 0.311842i
\(574\) 0 0
\(575\) 1.93141i 0.0805455i
\(576\) 0 0
\(577\) 11.6155 + 6.70622i 0.483560 + 0.279183i 0.721899 0.691999i \(-0.243270\pi\)
−0.238339 + 0.971182i \(0.576603\pi\)
\(578\) 0 0
\(579\) 17.7723 28.8630i 0.738591 1.19950i
\(580\) 0 0
\(581\) 1.74825 + 28.0339i 0.0725295 + 1.16304i
\(582\) 0 0
\(583\) 35.1021i 1.45378i
\(584\) 0 0
\(585\) 1.78117 + 3.53303i 0.0736424 + 0.146073i
\(586\) 0 0
\(587\) −17.2883 + 29.9443i −0.713566 + 1.23593i 0.249943 + 0.968260i \(0.419588\pi\)
−0.963510 + 0.267673i \(0.913745\pi\)
\(588\) 0 0
\(589\) 1.00889 + 1.74744i 0.0415705 + 0.0720022i
\(590\) 0 0
\(591\) 14.8876 24.1781i 0.612393 0.994554i
\(592\) 0 0
\(593\) 16.9169 9.76697i 0.694693 0.401081i −0.110675 0.993857i \(-0.535301\pi\)
0.805368 + 0.592775i \(0.201968\pi\)
\(594\) 0 0
\(595\) −5.37509 2.67191i −0.220357 0.109538i
\(596\) 0 0
\(597\) −12.9557 23.9836i −0.530241 0.981583i
\(598\) 0 0
\(599\) 16.8037i 0.686581i 0.939229 + 0.343291i \(0.111542\pi\)
−0.939229 + 0.343291i \(0.888458\pi\)
\(600\) 0 0
\(601\) 6.18993 + 3.57376i 0.252492 + 0.145777i 0.620905 0.783886i \(-0.286765\pi\)
−0.368413 + 0.929662i \(0.620099\pi\)
\(602\) 0 0
\(603\) 24.3089 12.2553i 0.989933 0.499074i
\(604\) 0 0
\(605\) 0.737999 0.426084i 0.0300039 0.0173228i
\(606\) 0 0
\(607\) −8.93176 + 15.4703i −0.362529 + 0.627919i −0.988376 0.152027i \(-0.951420\pi\)
0.625847 + 0.779946i \(0.284753\pi\)
\(608\) 0 0
\(609\) 12.2252 + 6.51510i 0.495392 + 0.264005i
\(610\) 0 0
\(611\) 11.3488 6.55220i 0.459121 0.265074i
\(612\) 0 0
\(613\) 9.85193 17.0640i 0.397916 0.689210i −0.595553 0.803316i \(-0.703067\pi\)
0.993469 + 0.114106i \(0.0364003\pi\)
\(614\) 0 0
\(615\) −0.140975 + 0.228949i −0.00568465 + 0.00923213i
\(616\) 0 0
\(617\) −15.2946 26.4910i −0.615738 1.06649i −0.990255 0.139269i \(-0.955525\pi\)
0.374517 0.927220i \(-0.377809\pi\)
\(618\) 0 0
\(619\) −6.44975 11.1713i −0.259237 0.449012i 0.706800 0.707413i \(-0.250138\pi\)
−0.966038 + 0.258401i \(0.916805\pi\)
\(620\) 0 0
\(621\) −1.67320 1.16584i −0.0671434 0.0467835i
\(622\) 0 0
\(623\) −13.4650 + 27.0877i −0.539466 + 1.08525i
\(624\) 0 0
\(625\) −11.9123 + 20.6327i −0.476492 + 0.825309i
\(626\) 0 0
\(627\) 4.07951 2.20371i 0.162920 0.0880076i
\(628\) 0 0
\(629\) 39.3598i 1.56938i
\(630\) 0 0
\(631\) 16.8826i 0.672085i 0.941847 + 0.336042i \(0.109089\pi\)
−0.941847 + 0.336042i \(0.890911\pi\)
\(632\) 0 0
\(633\) −0.419879 + 14.8229i −0.0166887 + 0.589157i
\(634\) 0 0
\(635\) −1.09071 + 1.88917i −0.0432836 + 0.0749694i
\(636\) 0 0
\(637\) −4.08674 32.6389i −0.161922 1.29320i
\(638\) 0 0
\(639\) −4.14128 + 2.08782i −0.163827 + 0.0825930i
\(640\) 0 0
\(641\) −6.14505 10.6435i −0.242715 0.420394i 0.718772 0.695246i \(-0.244705\pi\)
−0.961487 + 0.274852i \(0.911371\pi\)
\(642\) 0 0
\(643\) −20.2664 35.1024i −0.799228 1.38430i −0.920119 0.391638i \(-0.871909\pi\)
0.120891 0.992666i \(-0.461425\pi\)
\(644\) 0 0
\(645\) 2.40442 + 0.0681085i 0.0946739 + 0.00268177i
\(646\) 0 0
\(647\) −12.3850 + 21.4515i −0.486905 + 0.843344i −0.999887 0.0150552i \(-0.995208\pi\)
0.512982 + 0.858400i \(0.328541\pi\)
\(648\) 0 0
\(649\) −27.8634 + 16.0870i −1.09374 + 0.631469i
\(650\) 0 0
\(651\) 0.330986 + 9.74193i 0.0129723 + 0.381816i
\(652\) 0 0
\(653\) 9.33573 16.1700i 0.365335 0.632779i −0.623495 0.781828i \(-0.714288\pi\)
0.988830 + 0.149048i \(0.0476210\pi\)
\(654\) 0 0
\(655\) −1.94096 + 1.12061i −0.0758395 + 0.0437860i
\(656\) 0 0
\(657\) −0.106316 + 1.87513i −0.00414780 + 0.0731557i
\(658\) 0 0
\(659\) 39.5720 + 22.8469i 1.54150 + 0.889988i 0.998744 + 0.0501010i \(0.0159543\pi\)
0.542761 + 0.839887i \(0.317379\pi\)
\(660\) 0 0
\(661\) 29.3756i 1.14258i 0.820749 + 0.571289i \(0.193556\pi\)
−0.820749 + 0.571289i \(0.806444\pi\)
\(662\) 0 0
\(663\) −34.4964 + 56.0236i −1.33973 + 2.17578i
\(664\) 0 0
\(665\) 0.389489 + 0.586930i 0.0151038 + 0.0227602i
\(666\) 0 0
\(667\) 1.02746 0.593203i 0.0397833 0.0229689i
\(668\) 0 0
\(669\) 15.8577 + 29.3558i 0.613094 + 1.13496i
\(670\) 0 0
\(671\) 15.7653 + 27.3063i 0.608613 + 1.05415i
\(672\) 0 0
\(673\) 13.3294 23.0872i 0.513810 0.889945i −0.486062 0.873925i \(-0.661567\pi\)
0.999872 0.0160205i \(-0.00509972\pi\)
\(674\) 0 0
\(675\) 10.8605 + 23.1506i 0.418020 + 0.891066i
\(676\) 0 0
\(677\) 47.3055i 1.81810i 0.416687 + 0.909050i \(0.363191\pi\)
−0.416687 + 0.909050i \(0.636809\pi\)
\(678\) 0 0
\(679\) −41.5474 + 2.59097i −1.59444 + 0.0994323i
\(680\) 0 0
\(681\) −35.7351 1.01225i −1.36937 0.0387893i
\(682\) 0 0
\(683\) −23.6562 13.6579i −0.905178 0.522605i −0.0263018 0.999654i \(-0.508373\pi\)
−0.878877 + 0.477049i \(0.841706\pi\)
\(684\) 0 0
\(685\) 2.42758i 0.0927532i
\(686\) 0 0
\(687\) −32.2994 + 17.4478i −1.23230 + 0.665675i
\(688\) 0 0
\(689\) 58.4508i 2.22680i
\(690\) 0 0
\(691\) 39.7682 1.51285 0.756427 0.654078i \(-0.226943\pi\)
0.756427 + 0.654078i \(0.226943\pi\)
\(692\) 0 0
\(693\) 22.3987 0.126408i 0.850855 0.00480184i
\(694\) 0 0
\(695\) 4.03859i 0.153193i
\(696\) 0 0
\(697\) −4.47090 −0.169348
\(698\) 0 0
\(699\) −26.9576 0.763610i −1.01963 0.0288824i
\(700\) 0 0
\(701\) −33.5286 −1.26636 −0.633180 0.774005i \(-0.718251\pi\)
−0.633180 + 0.774005i \(0.718251\pi\)
\(702\) 0 0
\(703\) 2.30946 4.00010i 0.0871029 0.150867i
\(704\) 0 0
\(705\) −1.19276 + 0.644314i −0.0449218 + 0.0242663i
\(706\) 0 0
\(707\) 8.25674 16.6101i 0.310527 0.624688i
\(708\) 0 0
\(709\) −30.3525 −1.13991 −0.569956 0.821675i \(-0.693040\pi\)
−0.569956 + 0.821675i \(0.693040\pi\)
\(710\) 0 0
\(711\) 41.3538 20.8485i 1.55089 0.781879i
\(712\) 0 0
\(713\) 0.722967 + 0.417405i 0.0270753 + 0.0156319i
\(714\) 0 0
\(715\) −3.22324 + 1.86094i −0.120542 + 0.0695952i
\(716\) 0 0
\(717\) −0.360556 + 12.7286i −0.0134652 + 0.475359i
\(718\) 0 0
\(719\) −17.8512 30.9192i −0.665737 1.15309i −0.979085 0.203452i \(-0.934784\pi\)
0.313348 0.949638i \(-0.398549\pi\)
\(720\) 0 0
\(721\) −0.927523 14.8733i −0.0345427 0.553909i
\(722\) 0 0
\(723\) 0.282214 9.96293i 0.0104956 0.370525i
\(724\) 0 0
\(725\) −14.8766 −0.552505
\(726\) 0 0
\(727\) 4.33546 7.50924i 0.160793 0.278502i −0.774360 0.632745i \(-0.781928\pi\)
0.935153 + 0.354243i \(0.115261\pi\)
\(728\) 0 0
\(729\) 26.6112 + 4.56560i 0.985600 + 0.169096i
\(730\) 0 0
\(731\) 19.9989 + 34.6390i 0.739684 + 1.28117i
\(732\) 0 0
\(733\) 3.50591 + 2.02414i 0.129494 + 0.0747633i 0.563348 0.826220i \(-0.309513\pi\)
−0.433854 + 0.900983i \(0.642847\pi\)
\(734\) 0 0
\(735\) 0.326999 + 3.38713i 0.0120615 + 0.124936i
\(736\) 0 0
\(737\) 12.8041 + 22.1774i 0.471646 + 0.816915i
\(738\) 0 0
\(739\) 18.5401 + 10.7042i 0.682010 + 0.393759i 0.800612 0.599183i \(-0.204508\pi\)
−0.118602 + 0.992942i \(0.537841\pi\)
\(740\) 0 0
\(741\) 6.79305 3.66953i 0.249549 0.134804i
\(742\) 0 0
\(743\) −43.3251 + 25.0137i −1.58944 + 0.917665i −0.596044 + 0.802952i \(0.703262\pi\)
−0.993399 + 0.114714i \(0.963405\pi\)
\(744\) 0 0
\(745\) −0.259503 + 0.149824i −0.00950746 + 0.00548914i
\(746\) 0 0
\(747\) −31.7982 1.80290i −1.16344 0.0659647i
\(748\) 0 0
\(749\) −6.80695 + 13.6936i −0.248721 + 0.500352i
\(750\) 0 0
\(751\) −18.4527 10.6537i −0.673349 0.388758i 0.123995 0.992283i \(-0.460429\pi\)
−0.797344 + 0.603525i \(0.793763\pi\)
\(752\) 0 0
\(753\) −19.9791 + 32.4469i −0.728078 + 1.18243i
\(754\) 0 0
\(755\) −3.63289 −0.132214
\(756\) 0 0
\(757\) 13.2589 0.481904 0.240952 0.970537i \(-0.422540\pi\)
0.240952 + 0.970537i \(0.422540\pi\)
\(758\) 0 0
\(759\) 1.00582 1.63349i 0.0365088 0.0592919i
\(760\) 0 0
\(761\) 34.8705 + 20.1325i 1.26406 + 0.729803i 0.973857 0.227163i \(-0.0729451\pi\)
0.290199 + 0.956966i \(0.406278\pi\)
\(762\) 0 0
\(763\) 1.35974 + 21.8041i 0.0492259 + 0.789361i
\(764\) 0 0
\(765\) 3.73134 5.69230i 0.134907 0.205805i
\(766\) 0 0
\(767\) −46.3972 + 26.7874i −1.67531 + 0.967238i
\(768\) 0 0
\(769\) 5.51138 3.18199i 0.198745 0.114746i −0.397325 0.917678i \(-0.630061\pi\)
0.596070 + 0.802932i \(0.296728\pi\)
\(770\) 0 0
\(771\) −2.21827 + 1.19829i −0.0798891 + 0.0431553i
\(772\) 0 0
\(773\) 42.9373 + 24.7899i 1.54435 + 0.891629i 0.998557 + 0.0537073i \(0.0171038\pi\)
0.545790 + 0.837922i \(0.316230\pi\)
\(774\) 0 0
\(775\) −5.23395 9.06546i −0.188009 0.325641i
\(776\) 0 0
\(777\) 18.9339 11.8064i 0.679250 0.423551i
\(778\) 0 0
\(779\) 0.454374 + 0.262333i 0.0162796 + 0.00939905i
\(780\) 0 0
\(781\) −2.18132 3.77816i −0.0780539 0.135193i
\(782\) 0 0
\(783\) −8.97983 + 12.8878i −0.320913 + 0.460572i
\(784\) 0 0
\(785\) 1.13705 1.96943i 0.0405831 0.0702919i
\(786\) 0 0
\(787\) 28.2267 1.00617 0.503086 0.864236i \(-0.332198\pi\)
0.503086 + 0.864236i \(0.332198\pi\)
\(788\) 0 0
\(789\) 1.04178 36.7777i 0.0370883 1.30932i
\(790\) 0 0
\(791\) 30.6828 + 15.2521i 1.09095 + 0.542303i
\(792\) 0 0
\(793\) 26.2518 + 45.4695i 0.932230 + 1.61467i
\(794\) 0 0
\(795\) −0.171214 + 6.04434i −0.00607234 + 0.214371i
\(796\) 0 0
\(797\) −15.6877 + 9.05731i −0.555688 + 0.320826i −0.751413 0.659832i \(-0.770627\pi\)
0.195725 + 0.980659i \(0.437294\pi\)
\(798\) 0 0
\(799\) −19.5223 11.2712i −0.690650 0.398747i
\(800\) 0 0
\(801\) −28.6863 18.8040i −1.01358 0.664408i
\(802\) 0 0
\(803\) −1.76671 −0.0623458
\(804\) 0 0
\(805\) 0.260968 + 0.129725i 0.00919793 + 0.00457221i
\(806\) 0 0
\(807\) 30.7509 16.6113i 1.08248 0.584746i
\(808\) 0 0
\(809\) −1.56171 + 2.70496i −0.0549067 + 0.0951012i −0.892172 0.451695i \(-0.850819\pi\)
0.837266 + 0.546796i \(0.184153\pi\)
\(810\) 0 0
\(811\) 9.66660 0.339440 0.169720 0.985492i \(-0.445714\pi\)
0.169720 + 0.985492i \(0.445714\pi\)
\(812\) 0 0
\(813\) 30.0990 + 0.852596i 1.05562 + 0.0299019i
\(814\) 0 0
\(815\) −5.12585 −0.179551
\(816\) 0 0
\(817\) 4.69378i 0.164214i
\(818\) 0 0
\(819\) 37.2975 0.210490i 1.30328 0.00735511i
\(820\) 0 0
\(821\) 28.9554 1.01055 0.505275 0.862958i \(-0.331391\pi\)
0.505275 + 0.862958i \(0.331391\pi\)
\(822\) 0 0
\(823\) 39.7963i 1.38721i −0.720355 0.693605i \(-0.756021\pi\)
0.720355 0.693605i \(-0.243979\pi\)
\(824\) 0 0
\(825\) −21.1638 + 11.4325i −0.736830 + 0.398028i
\(826\) 0 0
\(827\) 37.9694i 1.32033i −0.751123 0.660163i \(-0.770487\pi\)
0.751123 0.660163i \(-0.229513\pi\)
\(828\) 0 0
\(829\) 38.3383 + 22.1346i 1.33154 + 0.768766i 0.985536 0.169466i \(-0.0542042\pi\)
0.346006 + 0.938232i \(0.387538\pi\)
\(830\) 0 0
\(831\) −1.96293 0.0556028i −0.0680934 0.00192884i
\(832\) 0 0
\(833\) −45.1089 + 34.1613i −1.56293 + 1.18362i
\(834\) 0 0
\(835\) 4.72634i 0.163562i
\(836\) 0 0
\(837\) −11.0128 0.937868i −0.380659 0.0324174i
\(838\) 0 0
\(839\) 16.3128 28.2547i 0.563182 0.975460i −0.434034 0.900896i \(-0.642910\pi\)
0.997216 0.0745634i \(-0.0237563\pi\)
\(840\) 0 0
\(841\) 9.93088 + 17.2008i 0.342444 + 0.593130i
\(842\) 0 0
\(843\) 10.4969 + 19.4319i 0.361533 + 0.669271i
\(844\) 0 0
\(845\) −2.20741 + 1.27445i −0.0759374 + 0.0438425i
\(846\) 0 0
\(847\) −0.499990 8.01758i −0.0171799 0.275487i
\(848\) 0 0
\(849\) −6.14819 + 9.98493i −0.211005 + 0.342682i
\(850\) 0 0
\(851\) 1.91098i 0.0655075i
\(852\) 0 0
\(853\) −9.50254 5.48629i −0.325361 0.187847i 0.328419 0.944532i \(-0.393484\pi\)
−0.653779 + 0.756685i \(0.726818\pi\)
\(854\) 0 0
\(855\) −0.713211 + 0.359565i −0.0243913 + 0.0122968i
\(856\) 0 0
\(857\) −3.04476 + 1.75789i −0.104007 + 0.0600485i −0.551101 0.834438i \(-0.685792\pi\)
0.447094 + 0.894487i \(0.352459\pi\)
\(858\) 0 0
\(859\) −7.58841 + 13.1435i −0.258913 + 0.448451i −0.965951 0.258725i \(-0.916698\pi\)
0.707038 + 0.707176i \(0.250031\pi\)
\(860\) 0 0
\(861\) 1.34109 + 2.15071i 0.0457043 + 0.0732960i
\(862\) 0 0
\(863\) −29.7041 + 17.1496i −1.01114 + 0.583781i −0.911525 0.411245i \(-0.865094\pi\)
−0.0996133 + 0.995026i \(0.531761\pi\)
\(864\) 0 0
\(865\) 2.78425 4.82246i 0.0946673 0.163969i
\(866\) 0 0
\(867\) 83.6988 + 2.37088i 2.84256 + 0.0805195i
\(868\) 0 0
\(869\) 21.7821 + 37.7278i 0.738909 + 1.27983i
\(870\) 0 0
\(871\) 21.3210 + 36.9290i 0.722433 + 1.25129i
\(872\) 0 0
\(873\) 2.67197 47.1262i 0.0904325 1.59498i
\(874\) 0 0
\(875\) −4.07356 6.13854i −0.137712 0.207520i
\(876\) 0 0
\(877\) −10.6413 + 18.4313i −0.359332 + 0.622381i −0.987849 0.155414i \(-0.950329\pi\)
0.628517 + 0.777795i \(0.283662\pi\)
\(878\) 0 0
\(879\) −0.595987 + 21.0400i −0.0201021 + 0.709661i
\(880\) 0 0
\(881\) 20.5029i 0.690761i −0.938463 0.345380i \(-0.887750\pi\)
0.938463 0.345380i \(-0.112250\pi\)
\(882\) 0 0
\(883\) 39.9687i 1.34506i −0.740072 0.672528i \(-0.765209\pi\)
0.740072 0.672528i \(-0.234791\pi\)
\(884\) 0 0
\(885\) 4.87635 2.63415i 0.163917 0.0885461i
\(886\) 0 0
\(887\) 16.6510 28.8404i 0.559085 0.968364i −0.438488 0.898737i \(-0.644486\pi\)
0.997573 0.0696271i \(-0.0221809\pi\)
\(888\) 0 0
\(889\) 11.3704 + 17.1342i 0.381350 + 0.574664i
\(890\) 0 0
\(891\) −2.87083 + 25.2353i −0.0961764 + 0.845416i
\(892\) 0 0
\(893\) 1.32269 + 2.29097i 0.0442621 + 0.0766643i
\(894\) 0 0
\(895\) −3.49181 6.04798i −0.116718 0.202162i
\(896\) 0 0
\(897\) 1.67485 2.72003i 0.0559216 0.0908191i
\(898\) 0 0
\(899\) 3.21505 5.56863i 0.107228 0.185724i
\(900\) 0 0
\(901\) −87.0772 + 50.2741i −2.90096 + 1.67487i
\(902\) 0 0
\(903\) 10.6641 20.0107i 0.354880 0.665914i
\(904\) 0 0
\(905\) 1.02522 1.77574i 0.0340796 0.0590276i
\(906\) 0 0
\(907\) −1.48209 + 0.855683i −0.0492119 + 0.0284125i −0.524404 0.851470i \(-0.675712\pi\)
0.475192 + 0.879882i \(0.342379\pi\)
\(908\) 0 0
\(909\) 17.5904 + 11.5306i 0.583435 + 0.382446i
\(910\) 0 0
\(911\) 7.22479 + 4.17123i 0.239368 + 0.138199i 0.614886 0.788616i \(-0.289202\pi\)
−0.375518 + 0.926815i \(0.622535\pi\)
\(912\) 0 0
\(913\) 29.9597i 0.991520i
\(914\) 0 0
\(915\) −2.58149 4.77885i −0.0853413 0.157984i
\(916\) 0 0
\(917\) 1.31499 + 21.0865i 0.0434248 + 0.696337i
\(918\) 0 0
\(919\) 13.4897 7.78828i 0.444984 0.256911i −0.260726 0.965413i \(-0.583962\pi\)
0.705709 + 0.708501i \(0.250628\pi\)
\(920\) 0 0
\(921\) −15.7115 + 25.5162i −0.517712 + 0.840788i
\(922\) 0 0
\(923\) −3.63226 6.29126i −0.119557 0.207079i
\(924\) 0 0
\(925\) −11.9811 + 20.7519i −0.393937 + 0.682318i
\(926\) 0 0
\(927\) 16.8704 + 0.956520i 0.554095 + 0.0314162i
\(928\) 0 0
\(929\) 2.44492i 0.0802152i −0.999195 0.0401076i \(-0.987230\pi\)
0.999195 0.0401076i \(-0.0127701\pi\)
\(930\) 0 0
\(931\) 6.58881 0.824987i 0.215939 0.0270379i
\(932\) 0 0
\(933\) 24.0441 39.0487i 0.787169 1.27840i
\(934\) 0 0
\(935\) 5.54468 + 3.20122i 0.181330 + 0.104691i
\(936\) 0 0
\(937\) 2.32069i 0.0758137i −0.999281 0.0379069i \(-0.987931\pi\)
0.999281 0.0379069i \(-0.0120690\pi\)
\(938\) 0 0
\(939\) 6.58878 + 4.05702i 0.215017 + 0.132396i
\(940\) 0 0
\(941\) 15.9023i 0.518400i 0.965824 + 0.259200i \(0.0834588\pi\)
−0.965824 + 0.259200i \(0.916541\pi\)
\(942\) 0 0
\(943\) 0.217069 0.00706874
\(944\) 0 0
\(945\) −3.85751 0.0874853i −0.125485 0.00284590i
\(946\) 0 0
\(947\) 36.3372i 1.18080i −0.807111 0.590400i \(-0.798970\pi\)
0.807111 0.590400i \(-0.201030\pi\)
\(948\) 0 0
\(949\) −2.94186 −0.0954969
\(950\) 0 0
\(951\) 26.7027 43.3663i 0.865893 1.40625i
\(952\) 0 0
\(953\) −10.1790 −0.329730 −0.164865 0.986316i \(-0.552719\pi\)
−0.164865 + 0.986316i \(0.552719\pi\)
\(954\) 0 0
\(955\) −1.15348 + 1.99789i −0.0373259 + 0.0646503i
\(956\) 0 0
\(957\) −12.5819 7.74726i −0.406715 0.250433i
\(958\) 0 0
\(959\) 20.4920 + 10.1864i 0.661722 + 0.328936i
\(960\) 0 0
\(961\) −26.4755 −0.854048
\(962\) 0 0
\(963\) −14.5017 9.50596i −0.467311 0.306325i
\(964\) 0 0
\(965\) −4.75668 2.74627i −0.153123 0.0884055i
\(966\) 0 0
\(967\) 17.1689 9.91247i 0.552115 0.318764i −0.197860 0.980230i \(-0.563399\pi\)
0.749974 + 0.661467i \(0.230066\pi\)
\(968\) 0 0
\(969\) −11.3095 6.96376i −0.363312 0.223708i
\(970\) 0 0
\(971\) 12.7738 + 22.1249i 0.409931 + 0.710021i 0.994882 0.101048i \(-0.0322196\pi\)
−0.584951 + 0.811069i \(0.698886\pi\)
\(972\) 0 0
\(973\) −34.0911 16.9464i −1.09291 0.543276i
\(974\) 0 0
\(975\) −35.2413 + 19.0370i −1.12862 + 0.609671i
\(976\) 0 0
\(977\) −22.7971 −0.729343 −0.364671 0.931136i \(-0.618819\pi\)
−0.364671 + 0.931136i \(0.618819\pi\)
\(978\) 0 0
\(979\) 16.1325 27.9424i 0.515598 0.893041i
\(980\) 0 0
\(981\) −24.7318 1.40225i −0.789626 0.0447704i
\(982\) 0 0
\(983\) −27.9954 48.4894i −0.892914 1.54657i −0.836366 0.548172i \(-0.815324\pi\)
−0.0565482 0.998400i \(-0.518009\pi\)
\(984\) 0 0
\(985\) −3.98460 2.30051i −0.126960 0.0733003i
\(986\) 0 0
\(987\) 0.433935 + 12.7721i 0.0138123 + 0.406539i
\(988\) 0 0
\(989\) −0.970974 1.68178i −0.0308752 0.0534774i
\(990\) 0 0
\(991\) −21.3062 12.3011i −0.676814 0.390759i 0.121840 0.992550i \(-0.461121\pi\)
−0.798653 + 0.601791i \(0.794454\pi\)
\(992\) 0 0
\(993\) 1.44809 + 0.891655i 0.0459537 + 0.0282958i
\(994\) 0 0
\(995\) −3.82534 + 2.20856i −0.121272 + 0.0700162i
\(996\) 0 0
\(997\) 35.0171 20.2171i 1.10900 0.640283i 0.170432 0.985370i \(-0.445484\pi\)
0.938571 + 0.345087i \(0.112150\pi\)
\(998\) 0 0
\(999\) 10.7456 + 22.9056i 0.339974 + 0.724702i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.cz.h.367.8 yes 24
3.2 odd 2 3024.2.cz.g.2719.6 24
4.3 odd 2 1008.2.cz.g.367.5 yes 24
7.5 odd 6 1008.2.bf.h.943.4 yes 24
9.4 even 3 1008.2.bf.g.31.9 24
9.5 odd 6 3024.2.bf.h.1711.7 24
12.11 even 2 3024.2.cz.h.2719.6 24
21.5 even 6 3024.2.bf.g.2287.6 24
28.19 even 6 1008.2.bf.g.943.9 yes 24
36.23 even 6 3024.2.bf.g.1711.7 24
36.31 odd 6 1008.2.bf.h.31.4 yes 24
63.5 even 6 3024.2.cz.h.1279.6 24
63.40 odd 6 1008.2.cz.g.607.5 yes 24
84.47 odd 6 3024.2.bf.h.2287.6 24
252.103 even 6 inner 1008.2.cz.h.607.8 yes 24
252.131 odd 6 3024.2.cz.g.1279.6 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.2.bf.g.31.9 24 9.4 even 3
1008.2.bf.g.943.9 yes 24 28.19 even 6
1008.2.bf.h.31.4 yes 24 36.31 odd 6
1008.2.bf.h.943.4 yes 24 7.5 odd 6
1008.2.cz.g.367.5 yes 24 4.3 odd 2
1008.2.cz.g.607.5 yes 24 63.40 odd 6
1008.2.cz.h.367.8 yes 24 1.1 even 1 trivial
1008.2.cz.h.607.8 yes 24 252.103 even 6 inner
3024.2.bf.g.1711.7 24 36.23 even 6
3024.2.bf.g.2287.6 24 21.5 even 6
3024.2.bf.h.1711.7 24 9.5 odd 6
3024.2.bf.h.2287.6 24 84.47 odd 6
3024.2.cz.g.1279.6 24 252.131 odd 6
3024.2.cz.g.2719.6 24 3.2 odd 2
3024.2.cz.h.1279.6 24 63.5 even 6
3024.2.cz.h.2719.6 24 12.11 even 2