Properties

Label 3024.2.cz.g.1279.6
Level $3024$
Weight $2$
Character 3024.1279
Analytic conductor $24.147$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3024,2,Mod(1279,3024)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3024, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 2, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3024.1279");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.cz (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 1008)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1279.6
Character \(\chi\) \(=\) 3024.1279
Dual form 3024.2.cz.g.2719.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.243063 - 0.140332i) q^{5} +(-2.20451 - 1.46292i) q^{7} +(-2.44393 - 1.41101i) q^{11} +(4.06955 + 2.34956i) q^{13} +(7.00051 - 4.04175i) q^{17} +(0.474304 - 0.821518i) q^{19} +(-0.339885 + 0.196233i) q^{23} +(-2.46061 + 4.26191i) q^{25} +(-1.51148 - 2.61795i) q^{29} +2.12709 q^{31} +(-0.741129 - 0.0462181i) q^{35} +(-2.43458 + 4.21681i) q^{37} +(-0.478990 - 0.276545i) q^{41} +(-4.28515 + 2.47404i) q^{43} -2.78870 q^{47} +(2.71972 + 6.45005i) q^{49} +(-6.21935 - 10.7722i) q^{53} -0.792039 q^{55} +11.4011 q^{59} -11.1731i q^{61} +1.31887 q^{65} -9.07446i q^{67} -1.54594i q^{71} +(-0.542172 + 0.313023i) q^{73} +(3.32348 + 6.68586i) q^{77} -15.4373i q^{79} +(-5.30821 - 9.19409i) q^{83} +(1.13438 - 1.96480i) q^{85} +(-9.90157 - 5.71667i) q^{89} +(-5.53414 - 11.1331i) q^{91} -0.266241i q^{95} +(13.6260 - 7.86698i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 3 q^{5} - 4 q^{7} - 9 q^{11} - 3 q^{13} + 3 q^{17} + 4 q^{19} - 6 q^{23} + 15 q^{25} - 18 q^{29} - 34 q^{31} - 42 q^{35} - 3 q^{37} - 36 q^{41} - 24 q^{43} - 42 q^{47} + 30 q^{49} + 12 q^{53} + 30 q^{55}+ \cdots + 3 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.243063 0.140332i 0.108701 0.0627585i −0.444664 0.895698i \(-0.646677\pi\)
0.553365 + 0.832939i \(0.313344\pi\)
\(6\) 0 0
\(7\) −2.20451 1.46292i −0.833226 0.552933i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.44393 1.41101i −0.736874 0.425434i 0.0840577 0.996461i \(-0.473212\pi\)
−0.820932 + 0.571027i \(0.806545\pi\)
\(12\) 0 0
\(13\) 4.06955 + 2.34956i 1.12869 + 0.651650i 0.943605 0.331073i \(-0.107411\pi\)
0.185085 + 0.982722i \(0.440744\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 7.00051 4.04175i 1.69787 0.980268i 0.750100 0.661324i \(-0.230005\pi\)
0.947774 0.318944i \(-0.103328\pi\)
\(18\) 0 0
\(19\) 0.474304 0.821518i 0.108813 0.188469i −0.806477 0.591266i \(-0.798628\pi\)
0.915290 + 0.402797i \(0.131962\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.339885 + 0.196233i −0.0708710 + 0.0409174i −0.535017 0.844841i \(-0.679695\pi\)
0.464146 + 0.885759i \(0.346361\pi\)
\(24\) 0 0
\(25\) −2.46061 + 4.26191i −0.492123 + 0.852382i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.51148 2.61795i −0.280674 0.486142i 0.690877 0.722973i \(-0.257225\pi\)
−0.971551 + 0.236831i \(0.923891\pi\)
\(30\) 0 0
\(31\) 2.12709 0.382037 0.191018 0.981586i \(-0.438821\pi\)
0.191018 + 0.981586i \(0.438821\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.741129 0.0462181i −0.125274 0.00781229i
\(36\) 0 0
\(37\) −2.43458 + 4.21681i −0.400242 + 0.693240i −0.993755 0.111585i \(-0.964407\pi\)
0.593513 + 0.804825i \(0.297741\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −0.478990 0.276545i −0.0748057 0.0431891i 0.462131 0.886812i \(-0.347085\pi\)
−0.536936 + 0.843623i \(0.680418\pi\)
\(42\) 0 0
\(43\) −4.28515 + 2.47404i −0.653480 + 0.377287i −0.789788 0.613380i \(-0.789810\pi\)
0.136308 + 0.990666i \(0.456476\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.78870 −0.406773 −0.203387 0.979098i \(-0.565195\pi\)
−0.203387 + 0.979098i \(0.565195\pi\)
\(48\) 0 0
\(49\) 2.71972 + 6.45005i 0.388531 + 0.921436i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −6.21935 10.7722i −0.854293 1.47968i −0.877300 0.479943i \(-0.840657\pi\)
0.0230067 0.999735i \(-0.492676\pi\)
\(54\) 0 0
\(55\) −0.792039 −0.106799
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 11.4011 1.48429 0.742146 0.670238i \(-0.233808\pi\)
0.742146 + 0.670238i \(0.233808\pi\)
\(60\) 0 0
\(61\) 11.1731i 1.43057i −0.698833 0.715284i \(-0.746297\pi\)
0.698833 0.715284i \(-0.253703\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.31887 0.163586
\(66\) 0 0
\(67\) 9.07446i 1.10862i −0.832310 0.554311i \(-0.812982\pi\)
0.832310 0.554311i \(-0.187018\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.54594i 0.183469i −0.995784 0.0917344i \(-0.970759\pi\)
0.995784 0.0917344i \(-0.0292411\pi\)
\(72\) 0 0
\(73\) −0.542172 + 0.313023i −0.0634564 + 0.0366366i −0.531393 0.847126i \(-0.678331\pi\)
0.467936 + 0.883762i \(0.344998\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.32348 + 6.68586i 0.378746 + 0.761925i
\(78\) 0 0
\(79\) 15.4373i 1.73683i −0.495835 0.868417i \(-0.665138\pi\)
0.495835 0.868417i \(-0.334862\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −5.30821 9.19409i −0.582652 1.00918i −0.995164 0.0982303i \(-0.968682\pi\)
0.412512 0.910952i \(-0.364652\pi\)
\(84\) 0 0
\(85\) 1.13438 1.96480i 0.123040 0.213112i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −9.90157 5.71667i −1.04956 0.605966i −0.127037 0.991898i \(-0.540547\pi\)
−0.922527 + 0.385932i \(0.873880\pi\)
\(90\) 0 0
\(91\) −5.53414 11.1331i −0.580136 1.16706i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.266241i 0.0273157i
\(96\) 0 0
\(97\) 13.6260 7.86698i 1.38351 0.798770i 0.390937 0.920417i \(-0.372151\pi\)
0.992573 + 0.121647i \(0.0388175\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.07162 + 3.50545i 0.604149 + 0.348806i 0.770672 0.637232i \(-0.219921\pi\)
−0.166523 + 0.986038i \(0.553254\pi\)
\(102\) 0 0
\(103\) −2.81624 4.87787i −0.277493 0.480631i 0.693268 0.720680i \(-0.256170\pi\)
−0.970761 + 0.240048i \(0.922837\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.00552 2.88994i −0.483902 0.279381i 0.238139 0.971231i \(-0.423463\pi\)
−0.722041 + 0.691850i \(0.756796\pi\)
\(108\) 0 0
\(109\) 4.12859 + 7.15092i 0.395447 + 0.684934i 0.993158 0.116777i \(-0.0372564\pi\)
−0.597711 + 0.801712i \(0.703923\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 6.47539 11.2157i 0.609154 1.05508i −0.382227 0.924069i \(-0.624843\pi\)
0.991380 0.131016i \(-0.0418240\pi\)
\(114\) 0 0
\(115\) −0.0550756 + 0.0953938i −0.00513583 + 0.00889552i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −21.3455 1.33114i −1.95673 0.122025i
\(120\) 0 0
\(121\) −1.51812 2.62947i −0.138011 0.239043i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 2.78454i 0.249057i
\(126\) 0 0
\(127\) 7.77236i 0.689685i 0.938660 + 0.344843i \(0.112068\pi\)
−0.938660 + 0.344843i \(0.887932\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −3.99271 6.91558i −0.348845 0.604217i 0.637200 0.770699i \(-0.280093\pi\)
−0.986045 + 0.166482i \(0.946759\pi\)
\(132\) 0 0
\(133\) −2.24742 + 1.11717i −0.194876 + 0.0968713i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.32470 7.49061i 0.369484 0.639966i −0.620001 0.784601i \(-0.712868\pi\)
0.989485 + 0.144636i \(0.0462010\pi\)
\(138\) 0 0
\(139\) 7.19469 12.4616i 0.610246 1.05698i −0.380953 0.924595i \(-0.624404\pi\)
0.991199 0.132383i \(-0.0422627\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −6.63048 11.4843i −0.554468 0.960367i
\(144\) 0 0
\(145\) −0.734767 0.424218i −0.0610191 0.0352294i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −0.533820 0.924603i −0.0437322 0.0757464i 0.843331 0.537395i \(-0.180592\pi\)
−0.887063 + 0.461648i \(0.847258\pi\)
\(150\) 0 0
\(151\) 11.2097 + 6.47194i 0.912235 + 0.526679i 0.881150 0.472838i \(-0.156770\pi\)
0.0310854 + 0.999517i \(0.490104\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0.517016 0.298500i 0.0415278 0.0239761i
\(156\) 0 0
\(157\) 8.10255i 0.646654i −0.946287 0.323327i \(-0.895199\pi\)
0.946287 0.323327i \(-0.104801\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.03635 + 0.0646288i 0.0816761 + 0.00509346i
\(162\) 0 0
\(163\) 15.8164 + 9.13162i 1.23884 + 0.715244i 0.968857 0.247621i \(-0.0796489\pi\)
0.269982 + 0.962865i \(0.412982\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −8.41991 + 14.5837i −0.651553 + 1.12852i 0.331194 + 0.943563i \(0.392549\pi\)
−0.982746 + 0.184959i \(0.940785\pi\)
\(168\) 0 0
\(169\) 4.54083 + 7.86496i 0.349295 + 0.604997i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 19.8404i 1.50844i 0.656623 + 0.754219i \(0.271984\pi\)
−0.656623 + 0.754219i \(0.728016\pi\)
\(174\) 0 0
\(175\) 11.6593 5.79573i 0.881359 0.438116i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −21.5488 + 12.4412i −1.61063 + 0.929899i −0.621409 + 0.783486i \(0.713439\pi\)
−0.989224 + 0.146413i \(0.953227\pi\)
\(180\) 0 0
\(181\) 7.30569i 0.543027i −0.962435 0.271514i \(-0.912476\pi\)
0.962435 0.271514i \(-0.0875242\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.36660i 0.100474i
\(186\) 0 0
\(187\) −22.8117 −1.66816
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 8.21966i 0.594754i −0.954760 0.297377i \(-0.903888\pi\)
0.954760 0.297377i \(-0.0961118\pi\)
\(192\) 0 0
\(193\) 19.5697 1.40866 0.704331 0.709872i \(-0.251247\pi\)
0.704331 + 0.709872i \(0.251247\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −16.3933 −1.16797 −0.583987 0.811763i \(-0.698508\pi\)
−0.583987 + 0.811763i \(0.698508\pi\)
\(198\) 0 0
\(199\) 7.86905 + 13.6296i 0.557822 + 0.966176i 0.997678 + 0.0681077i \(0.0216961\pi\)
−0.439856 + 0.898068i \(0.644971\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −0.497801 + 7.98248i −0.0349388 + 0.560260i
\(204\) 0 0
\(205\) −0.155233 −0.0108419
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −2.31833 + 1.33849i −0.160363 + 0.0925854i
\(210\) 0 0
\(211\) −7.41442 4.28072i −0.510430 0.294697i 0.222581 0.974914i \(-0.428552\pi\)
−0.733010 + 0.680218i \(0.761885\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −0.694374 + 1.20269i −0.0473559 + 0.0820229i
\(216\) 0 0
\(217\) −4.68919 3.11177i −0.318323 0.211241i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 37.9853 2.55517
\(222\) 0 0
\(223\) −9.63167 16.6825i −0.644984 1.11715i −0.984305 0.176475i \(-0.943531\pi\)
0.339321 0.940671i \(-0.389803\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 10.3200 17.8747i 0.684960 1.18639i −0.288489 0.957483i \(-0.593153\pi\)
0.973449 0.228902i \(-0.0735137\pi\)
\(228\) 0 0
\(229\) −18.3554 + 10.5975i −1.21296 + 0.700301i −0.963402 0.268060i \(-0.913618\pi\)
−0.249555 + 0.968361i \(0.580284\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 7.78510 13.4842i 0.510019 0.883378i −0.489914 0.871771i \(-0.662972\pi\)
0.999933 0.0116076i \(-0.00369490\pi\)
\(234\) 0 0
\(235\) −0.677828 + 0.391344i −0.0442167 + 0.0255285i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 6.36686 + 3.67591i 0.411838 + 0.237775i 0.691579 0.722301i \(-0.256915\pi\)
−0.279741 + 0.960075i \(0.590249\pi\)
\(240\) 0 0
\(241\) 4.98346 + 2.87720i 0.321013 + 0.185337i 0.651844 0.758353i \(-0.273996\pi\)
−0.330831 + 0.943690i \(0.607329\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.56621 + 1.18610i 0.100062 + 0.0757773i
\(246\) 0 0
\(247\) 3.86041 2.22881i 0.245632 0.141816i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 21.9997 1.38861 0.694305 0.719681i \(-0.255712\pi\)
0.694305 + 0.719681i \(0.255712\pi\)
\(252\) 0 0
\(253\) 1.10754 0.0696306
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.26062 0.727818i 0.0786351 0.0454000i −0.460167 0.887832i \(-0.652210\pi\)
0.538802 + 0.842432i \(0.318877\pi\)
\(258\) 0 0
\(259\) 11.5359 5.73440i 0.716807 0.356318i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −18.3962 10.6211i −1.13436 0.654922i −0.189331 0.981913i \(-0.560632\pi\)
−0.945028 + 0.326991i \(0.893965\pi\)
\(264\) 0 0
\(265\) −3.02338 1.74555i −0.185725 0.107228i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −17.4754 + 10.0894i −1.06549 + 0.615162i −0.926946 0.375194i \(-0.877576\pi\)
−0.138546 + 0.990356i \(0.544243\pi\)
\(270\) 0 0
\(271\) 8.69232 15.0555i 0.528021 0.914559i −0.471445 0.881895i \(-0.656268\pi\)
0.999466 0.0326639i \(-0.0103991\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 12.0272 6.94388i 0.725265 0.418732i
\(276\) 0 0
\(277\) −0.566878 + 0.981861i −0.0340604 + 0.0589943i −0.882553 0.470213i \(-0.844177\pi\)
0.848493 + 0.529207i \(0.177511\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6.37564 + 11.0429i 0.380339 + 0.658766i 0.991111 0.133040i \(-0.0424740\pi\)
−0.610772 + 0.791807i \(0.709141\pi\)
\(282\) 0 0
\(283\) −6.77001 −0.402435 −0.201218 0.979547i \(-0.564490\pi\)
−0.201218 + 0.979547i \(0.564490\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.651374 + 1.31037i 0.0384494 + 0.0773488i
\(288\) 0 0
\(289\) 24.1715 41.8662i 1.42185 2.46272i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 10.5242 + 6.07616i 0.614831 + 0.354973i 0.774854 0.632140i \(-0.217823\pi\)
−0.160023 + 0.987113i \(0.551157\pi\)
\(294\) 0 0
\(295\) 2.77117 1.59994i 0.161344 0.0931519i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.84424 −0.106655
\(300\) 0 0
\(301\) 13.0660 + 0.814817i 0.753111 + 0.0469653i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1.56795 2.71576i −0.0897804 0.155504i
\(306\) 0 0
\(307\) −17.3006 −0.987396 −0.493698 0.869634i \(-0.664355\pi\)
−0.493698 + 0.869634i \(0.664355\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −26.4759 −1.50131 −0.750655 0.660694i \(-0.770262\pi\)
−0.750655 + 0.660694i \(0.770262\pi\)
\(312\) 0 0
\(313\) 4.46734i 0.252509i −0.991998 0.126255i \(-0.959704\pi\)
0.991998 0.126255i \(-0.0402956\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −29.4033 −1.65146 −0.825728 0.564069i \(-0.809235\pi\)
−0.825728 + 0.564069i \(0.809235\pi\)
\(318\) 0 0
\(319\) 8.53081i 0.477634i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 7.66807i 0.426663i
\(324\) 0 0
\(325\) −20.0272 + 11.5627i −1.11091 + 0.641383i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 6.14771 + 4.07965i 0.338934 + 0.224918i
\(330\) 0 0
\(331\) 0.981836i 0.0539666i −0.999636 0.0269833i \(-0.991410\pi\)
0.999636 0.0269833i \(-0.00859009\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −1.27344 2.20566i −0.0695755 0.120508i
\(336\) 0 0
\(337\) 5.58390 9.67160i 0.304174 0.526846i −0.672903 0.739731i \(-0.734953\pi\)
0.977077 + 0.212885i \(0.0682861\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −5.19847 3.00134i −0.281513 0.162532i
\(342\) 0 0
\(343\) 3.44029 18.1979i 0.185758 0.982596i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 8.78830i 0.471781i 0.971780 + 0.235890i \(0.0758006\pi\)
−0.971780 + 0.235890i \(0.924199\pi\)
\(348\) 0 0
\(349\) −18.2265 + 10.5231i −0.975644 + 0.563288i −0.900952 0.433919i \(-0.857131\pi\)
−0.0746915 + 0.997207i \(0.523797\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2.28872 + 1.32139i 0.121816 + 0.0703307i 0.559670 0.828716i \(-0.310928\pi\)
−0.437854 + 0.899046i \(0.644261\pi\)
\(354\) 0 0
\(355\) −0.216945 0.375759i −0.0115142 0.0199432i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 20.5571 + 11.8687i 1.08496 + 0.626405i 0.932231 0.361863i \(-0.117859\pi\)
0.152733 + 0.988267i \(0.451192\pi\)
\(360\) 0 0
\(361\) 9.05007 + 15.6752i 0.476320 + 0.825010i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −0.0878545 + 0.152168i −0.00459852 + 0.00796486i
\(366\) 0 0
\(367\) −15.3410 + 26.5714i −0.800793 + 1.38701i 0.118303 + 0.992978i \(0.462255\pi\)
−0.919095 + 0.394036i \(0.871079\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −2.04833 + 32.8459i −0.106344 + 1.70527i
\(372\) 0 0
\(373\) −3.29461 5.70642i −0.170588 0.295467i 0.768037 0.640405i \(-0.221233\pi\)
−0.938626 + 0.344937i \(0.887900\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 14.2052i 0.731605i
\(378\) 0 0
\(379\) 0.316910i 0.0162786i −0.999967 0.00813930i \(-0.997409\pi\)
0.999967 0.00813930i \(-0.00259085\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −1.84855 3.20179i −0.0944567 0.163604i 0.814925 0.579566i \(-0.196778\pi\)
−0.909382 + 0.415963i \(0.863445\pi\)
\(384\) 0 0
\(385\) 1.74606 + 1.15869i 0.0889873 + 0.0590524i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −4.29814 + 7.44460i −0.217925 + 0.377456i −0.954173 0.299255i \(-0.903262\pi\)
0.736249 + 0.676711i \(0.236595\pi\)
\(390\) 0 0
\(391\) −1.58625 + 2.74746i −0.0802200 + 0.138945i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −2.16635 3.75224i −0.109001 0.188795i
\(396\) 0 0
\(397\) −10.9255 6.30783i −0.548334 0.316581i 0.200116 0.979772i \(-0.435868\pi\)
−0.748450 + 0.663192i \(0.769201\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −13.0646 22.6285i −0.652414 1.13001i −0.982535 0.186076i \(-0.940423\pi\)
0.330121 0.943939i \(-0.392910\pi\)
\(402\) 0 0
\(403\) 8.65631 + 4.99772i 0.431201 + 0.248954i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 11.8999 6.87041i 0.589856 0.340554i
\(408\) 0 0
\(409\) 0.288440i 0.0142624i 0.999975 + 0.00713121i \(0.00226995\pi\)
−0.999975 + 0.00713121i \(0.997730\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −25.1337 16.6789i −1.23675 0.820713i
\(414\) 0 0
\(415\) −2.58046 1.48983i −0.126670 0.0731327i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −9.56824 + 16.5727i −0.467439 + 0.809629i −0.999308 0.0371983i \(-0.988157\pi\)
0.531869 + 0.846827i \(0.321490\pi\)
\(420\) 0 0
\(421\) −11.5319 19.9738i −0.562030 0.973465i −0.997319 0.0731740i \(-0.976687\pi\)
0.435289 0.900291i \(-0.356646\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 39.7807i 1.92965i
\(426\) 0 0
\(427\) −16.3454 + 24.6312i −0.791008 + 1.19199i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 13.2196 7.63235i 0.636766 0.367637i −0.146601 0.989196i \(-0.546833\pi\)
0.783368 + 0.621558i \(0.213500\pi\)
\(432\) 0 0
\(433\) 24.5275i 1.17871i 0.807873 + 0.589357i \(0.200619\pi\)
−0.807873 + 0.589357i \(0.799381\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.372296i 0.0178093i
\(438\) 0 0
\(439\) 18.2801 0.872460 0.436230 0.899835i \(-0.356313\pi\)
0.436230 + 0.899835i \(0.356313\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 5.21155i 0.247608i 0.992307 + 0.123804i \(0.0395094\pi\)
−0.992307 + 0.123804i \(0.960491\pi\)
\(444\) 0 0
\(445\) −3.20894 −0.152118
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 9.38031 0.442684 0.221342 0.975196i \(-0.428956\pi\)
0.221342 + 0.975196i \(0.428956\pi\)
\(450\) 0 0
\(451\) 0.780414 + 1.35172i 0.0367482 + 0.0636498i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2.90747 1.92941i −0.136304 0.0904522i
\(456\) 0 0
\(457\) 29.3621 1.37350 0.686749 0.726894i \(-0.259037\pi\)
0.686749 + 0.726894i \(0.259037\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1.10606 0.638584i 0.0515144 0.0297418i −0.474022 0.880513i \(-0.657198\pi\)
0.525536 + 0.850771i \(0.323865\pi\)
\(462\) 0 0
\(463\) 23.8988 + 13.7980i 1.11067 + 0.641247i 0.939004 0.343907i \(-0.111751\pi\)
0.171669 + 0.985155i \(0.445084\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5.00656 8.67162i 0.231676 0.401275i −0.726625 0.687034i \(-0.758912\pi\)
0.958301 + 0.285759i \(0.0922458\pi\)
\(468\) 0 0
\(469\) −13.2752 + 20.0047i −0.612993 + 0.923733i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 13.9635 0.642043
\(474\) 0 0
\(475\) 2.33416 + 4.04288i 0.107098 + 0.185500i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 7.39474 12.8081i 0.337874 0.585216i −0.646158 0.763203i \(-0.723625\pi\)
0.984033 + 0.177988i \(0.0569588\pi\)
\(480\) 0 0
\(481\) −19.8153 + 11.4404i −0.903499 + 0.521636i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.20798 3.82434i 0.100259 0.173654i
\(486\) 0 0
\(487\) −12.8101 + 7.39589i −0.580479 + 0.335140i −0.761324 0.648372i \(-0.775450\pi\)
0.180845 + 0.983512i \(0.442117\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 12.5410 + 7.24053i 0.565966 + 0.326760i 0.755536 0.655107i \(-0.227376\pi\)
−0.189571 + 0.981867i \(0.560710\pi\)
\(492\) 0 0
\(493\) −21.1622 12.2180i −0.953099 0.550272i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −2.26158 + 3.40803i −0.101446 + 0.152871i
\(498\) 0 0
\(499\) 7.52679 4.34559i 0.336945 0.194536i −0.321975 0.946748i \(-0.604347\pi\)
0.658920 + 0.752213i \(0.271013\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 40.3239 1.79795 0.898977 0.437995i \(-0.144311\pi\)
0.898977 + 0.437995i \(0.144311\pi\)
\(504\) 0 0
\(505\) 1.96771 0.0875621
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −2.92593 + 1.68929i −0.129690 + 0.0748764i −0.563441 0.826156i \(-0.690523\pi\)
0.433752 + 0.901033i \(0.357190\pi\)
\(510\) 0 0
\(511\) 1.65315 + 0.103093i 0.0731311 + 0.00456058i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −1.36905 0.790420i −0.0603274 0.0348300i
\(516\) 0 0
\(517\) 6.81539 + 3.93487i 0.299741 + 0.173055i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 34.6315 19.9945i 1.51723 0.875976i 0.517440 0.855719i \(-0.326885\pi\)
0.999795 0.0202566i \(-0.00644831\pi\)
\(522\) 0 0
\(523\) −6.43351 + 11.1432i −0.281318 + 0.487257i −0.971710 0.236179i \(-0.924105\pi\)
0.690392 + 0.723436i \(0.257438\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 14.8907 8.59716i 0.648650 0.374498i
\(528\) 0 0
\(529\) −11.4230 + 19.7852i −0.496652 + 0.860226i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −1.29952 2.25083i −0.0562883 0.0974942i
\(534\) 0 0
\(535\) −1.62221 −0.0701341
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.45425 19.6010i 0.105712 0.844276i
\(540\) 0 0
\(541\) −2.79138 + 4.83481i −0.120011 + 0.207865i −0.919772 0.392454i \(-0.871626\pi\)
0.799761 + 0.600319i \(0.204960\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 2.00701 + 1.15875i 0.0859709 + 0.0496353i
\(546\) 0 0
\(547\) 9.37486 5.41258i 0.400840 0.231425i −0.286006 0.958228i \(-0.592328\pi\)
0.686846 + 0.726803i \(0.258994\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2.86760 −0.122164
\(552\) 0 0
\(553\) −22.5836 + 34.0317i −0.960352 + 1.44717i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −8.38879 14.5298i −0.355445 0.615648i 0.631749 0.775173i \(-0.282337\pi\)
−0.987194 + 0.159525i \(0.949004\pi\)
\(558\) 0 0
\(559\) −23.2515 −0.983436
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 28.6721 1.20838 0.604192 0.796839i \(-0.293496\pi\)
0.604192 + 0.796839i \(0.293496\pi\)
\(564\) 0 0
\(565\) 3.63483i 0.152918i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −33.2571 −1.39421 −0.697106 0.716968i \(-0.745529\pi\)
−0.697106 + 0.716968i \(0.745529\pi\)
\(570\) 0 0
\(571\) 32.5982i 1.36419i 0.731262 + 0.682097i \(0.238932\pi\)
−0.731262 + 0.682097i \(0.761068\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1.93141i 0.0805455i
\(576\) 0 0
\(577\) 11.6155 6.70622i 0.483560 0.279183i −0.238339 0.971182i \(-0.576603\pi\)
0.721899 + 0.691999i \(0.243270\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1.74825 + 28.0339i −0.0725295 + 1.16304i
\(582\) 0 0
\(583\) 35.1021i 1.45378i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 17.2883 + 29.9443i 0.713566 + 1.23593i 0.963510 + 0.267673i \(0.0862546\pi\)
−0.249943 + 0.968260i \(0.580412\pi\)
\(588\) 0 0
\(589\) 1.00889 1.74744i 0.0415705 0.0720022i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −16.9169 9.76697i −0.694693 0.401081i 0.110675 0.993857i \(-0.464699\pi\)
−0.805368 + 0.592775i \(0.798032\pi\)
\(594\) 0 0
\(595\) −5.37509 + 2.67191i −0.220357 + 0.109538i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 16.8037i 0.686581i 0.939229 + 0.343291i \(0.111542\pi\)
−0.939229 + 0.343291i \(0.888458\pi\)
\(600\) 0 0
\(601\) 6.18993 3.57376i 0.252492 0.145777i −0.368413 0.929662i \(-0.620099\pi\)
0.620905 + 0.783886i \(0.286765\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −0.737999 0.426084i −0.0300039 0.0173228i
\(606\) 0 0
\(607\) −8.93176 15.4703i −0.362529 0.627919i 0.625847 0.779946i \(-0.284753\pi\)
−0.988376 + 0.152027i \(0.951420\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −11.3488 6.55220i −0.459121 0.265074i
\(612\) 0 0
\(613\) 9.85193 + 17.0640i 0.397916 + 0.689210i 0.993469 0.114106i \(-0.0364003\pi\)
−0.595553 + 0.803316i \(0.703067\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 15.2946 26.4910i 0.615738 1.06649i −0.374517 0.927220i \(-0.622191\pi\)
0.990255 0.139269i \(-0.0444752\pi\)
\(618\) 0 0
\(619\) −6.44975 + 11.1713i −0.259237 + 0.449012i −0.966038 0.258401i \(-0.916805\pi\)
0.706800 + 0.707413i \(0.250138\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 13.4650 + 27.0877i 0.539466 + 1.08525i
\(624\) 0 0
\(625\) −11.9123 20.6327i −0.476492 0.825309i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 39.3598i 1.56938i
\(630\) 0 0
\(631\) 16.8826i 0.672085i −0.941847 0.336042i \(-0.890911\pi\)
0.941847 0.336042i \(-0.109089\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1.09071 + 1.88917i 0.0432836 + 0.0749694i
\(636\) 0 0
\(637\) −4.08674 + 32.6389i −0.161922 + 1.29320i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 6.14505 10.6435i 0.242715 0.420394i −0.718772 0.695246i \(-0.755295\pi\)
0.961487 + 0.274852i \(0.0886288\pi\)
\(642\) 0 0
\(643\) −20.2664 + 35.1024i −0.799228 + 1.38430i 0.120891 + 0.992666i \(0.461425\pi\)
−0.920119 + 0.391638i \(0.871909\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 12.3850 + 21.4515i 0.486905 + 0.843344i 0.999887 0.0150552i \(-0.00479241\pi\)
−0.512982 + 0.858400i \(0.671459\pi\)
\(648\) 0 0
\(649\) −27.8634 16.0870i −1.09374 0.631469i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −9.33573 16.1700i −0.365335 0.632779i 0.623495 0.781828i \(-0.285712\pi\)
−0.988830 + 0.149048i \(0.952379\pi\)
\(654\) 0 0
\(655\) −1.94096 1.12061i −0.0758395 0.0437860i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −39.5720 + 22.8469i −1.54150 + 0.889988i −0.542761 + 0.839887i \(0.682621\pi\)
−0.998744 + 0.0501010i \(0.984046\pi\)
\(660\) 0 0
\(661\) 29.3756i 1.14258i −0.820749 0.571289i \(-0.806444\pi\)
0.820749 0.571289i \(-0.193556\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −0.389489 + 0.586930i −0.0151038 + 0.0227602i
\(666\) 0 0
\(667\) 1.02746 + 0.593203i 0.0397833 + 0.0229689i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −15.7653 + 27.3063i −0.608613 + 1.05415i
\(672\) 0 0
\(673\) 13.3294 + 23.0872i 0.513810 + 0.889945i 0.999872 + 0.0160205i \(0.00509972\pi\)
−0.486062 + 0.873925i \(0.661567\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 47.3055i 1.81810i 0.416687 + 0.909050i \(0.363191\pi\)
−0.416687 + 0.909050i \(0.636809\pi\)
\(678\) 0 0
\(679\) −41.5474 2.59097i −1.59444 0.0994323i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 23.6562 13.6579i 0.905178 0.522605i 0.0263018 0.999654i \(-0.491627\pi\)
0.878877 + 0.477049i \(0.158294\pi\)
\(684\) 0 0
\(685\) 2.42758i 0.0927532i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 58.4508i 2.22680i
\(690\) 0 0
\(691\) 39.7682 1.51285 0.756427 0.654078i \(-0.226943\pi\)
0.756427 + 0.654078i \(0.226943\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 4.03859i 0.153193i
\(696\) 0 0
\(697\) −4.47090 −0.169348
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 33.5286 1.26636 0.633180 0.774005i \(-0.281749\pi\)
0.633180 + 0.774005i \(0.281749\pi\)
\(702\) 0 0
\(703\) 2.30946 + 4.00010i 0.0871029 + 0.150867i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −8.25674 16.6101i −0.310527 0.624688i
\(708\) 0 0
\(709\) −30.3525 −1.13991 −0.569956 0.821675i \(-0.693040\pi\)
−0.569956 + 0.821675i \(0.693040\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −0.722967 + 0.417405i −0.0270753 + 0.0156319i
\(714\) 0 0
\(715\) −3.22324 1.86094i −0.120542 0.0695952i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 17.8512 30.9192i 0.665737 1.15309i −0.313348 0.949638i \(-0.601451\pi\)
0.979085 0.203452i \(-0.0652160\pi\)
\(720\) 0 0
\(721\) −0.927523 + 14.8733i −0.0345427 + 0.553909i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 14.8766 0.552505
\(726\) 0 0
\(727\) 4.33546 + 7.50924i 0.160793 + 0.278502i 0.935153 0.354243i \(-0.115261\pi\)
−0.774360 + 0.632745i \(0.781928\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −19.9989 + 34.6390i −0.739684 + 1.28117i
\(732\) 0 0
\(733\) 3.50591 2.02414i 0.129494 0.0747633i −0.433854 0.900983i \(-0.642847\pi\)
0.563348 + 0.826220i \(0.309513\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −12.8041 + 22.1774i −0.471646 + 0.816915i
\(738\) 0 0
\(739\) 18.5401 10.7042i 0.682010 0.393759i −0.118602 0.992942i \(-0.537841\pi\)
0.800612 + 0.599183i \(0.204508\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 43.3251 + 25.0137i 1.58944 + 0.917665i 0.993399 + 0.114714i \(0.0365951\pi\)
0.596044 + 0.802952i \(0.296738\pi\)
\(744\) 0 0
\(745\) −0.259503 0.149824i −0.00950746 0.00548914i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 6.80695 + 13.6936i 0.248721 + 0.500352i
\(750\) 0 0
\(751\) −18.4527 + 10.6537i −0.673349 + 0.388758i −0.797344 0.603525i \(-0.793763\pi\)
0.123995 + 0.992283i \(0.460429\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 3.63289 0.132214
\(756\) 0 0
\(757\) 13.2589 0.481904 0.240952 0.970537i \(-0.422540\pi\)
0.240952 + 0.970537i \(0.422540\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −34.8705 + 20.1325i −1.26406 + 0.729803i −0.973857 0.227163i \(-0.927055\pi\)
−0.290199 + 0.956966i \(0.593722\pi\)
\(762\) 0 0
\(763\) 1.35974 21.8041i 0.0492259 0.789361i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 46.3972 + 26.7874i 1.67531 + 0.967238i
\(768\) 0 0
\(769\) 5.51138 + 3.18199i 0.198745 + 0.114746i 0.596070 0.802932i \(-0.296728\pi\)
−0.397325 + 0.917678i \(0.630061\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −42.9373 + 24.7899i −1.54435 + 0.891629i −0.545790 + 0.837922i \(0.683770\pi\)
−0.998557 + 0.0537073i \(0.982896\pi\)
\(774\) 0 0
\(775\) −5.23395 + 9.06546i −0.188009 + 0.325641i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −0.454374 + 0.262333i −0.0162796 + 0.00939905i
\(780\) 0 0
\(781\) −2.18132 + 3.77816i −0.0780539 + 0.135193i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1.13705 1.96943i −0.0405831 0.0702919i
\(786\) 0 0
\(787\) 28.2267 1.00617 0.503086 0.864236i \(-0.332198\pi\)
0.503086 + 0.864236i \(0.332198\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −30.6828 + 15.2521i −1.09095 + 0.542303i
\(792\) 0 0
\(793\) 26.2518 45.4695i 0.932230 1.61467i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 15.6877 + 9.05731i 0.555688 + 0.320826i 0.751413 0.659832i \(-0.229373\pi\)
−0.195725 + 0.980659i \(0.562706\pi\)
\(798\) 0 0
\(799\) −19.5223 + 11.2712i −0.690650 + 0.398747i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1.76671 0.0623458
\(804\) 0 0
\(805\) 0.260968 0.129725i 0.00919793 0.00457221i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.56171 + 2.70496i 0.0549067 + 0.0951012i 0.892172 0.451695i \(-0.149181\pi\)
−0.837266 + 0.546796i \(0.815847\pi\)
\(810\) 0 0
\(811\) 9.66660 0.339440 0.169720 0.985492i \(-0.445714\pi\)
0.169720 + 0.985492i \(0.445714\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 5.12585 0.179551
\(816\) 0 0
\(817\) 4.69378i 0.164214i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −28.9554 −1.01055 −0.505275 0.862958i \(-0.668609\pi\)
−0.505275 + 0.862958i \(0.668609\pi\)
\(822\) 0 0
\(823\) 39.7963i 1.38721i 0.720355 + 0.693605i \(0.243979\pi\)
−0.720355 + 0.693605i \(0.756021\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 37.9694i 1.32033i −0.751123 0.660163i \(-0.770487\pi\)
0.751123 0.660163i \(-0.229513\pi\)
\(828\) 0 0
\(829\) 38.3383 22.1346i 1.33154 0.768766i 0.346006 0.938232i \(-0.387538\pi\)
0.985536 + 0.169466i \(0.0542042\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 45.1089 + 34.1613i 1.56293 + 1.18362i
\(834\) 0 0
\(835\) 4.72634i 0.163562i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −16.3128 28.2547i −0.563182 0.975460i −0.997216 0.0745634i \(-0.976244\pi\)
0.434034 0.900896i \(-0.357090\pi\)
\(840\) 0 0
\(841\) 9.93088 17.2008i 0.342444 0.593130i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 2.20741 + 1.27445i 0.0759374 + 0.0438425i
\(846\) 0 0
\(847\) −0.499990 + 8.01758i −0.0171799 + 0.275487i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1.91098i 0.0655075i
\(852\) 0 0
\(853\) −9.50254 + 5.48629i −0.325361 + 0.187847i −0.653779 0.756685i \(-0.726818\pi\)
0.328419 + 0.944532i \(0.393484\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 3.04476 + 1.75789i 0.104007 + 0.0600485i 0.551101 0.834438i \(-0.314208\pi\)
−0.447094 + 0.894487i \(0.647541\pi\)
\(858\) 0 0
\(859\) −7.58841 13.1435i −0.258913 0.448451i 0.707038 0.707176i \(-0.250031\pi\)
−0.965951 + 0.258725i \(0.916698\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 29.7041 + 17.1496i 1.01114 + 0.583781i 0.911525 0.411245i \(-0.134906\pi\)
0.0996133 + 0.995026i \(0.468239\pi\)
\(864\) 0 0
\(865\) 2.78425 + 4.82246i 0.0946673 + 0.163969i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −21.7821 + 37.7278i −0.738909 + 1.27983i
\(870\) 0 0
\(871\) 21.3210 36.9290i 0.722433 1.25129i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 4.07356 6.13854i 0.137712 0.207520i
\(876\) 0 0
\(877\) −10.6413 18.4313i −0.359332 0.622381i 0.628517 0.777795i \(-0.283662\pi\)
−0.987849 + 0.155414i \(0.950329\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 20.5029i 0.690761i −0.938463 0.345380i \(-0.887750\pi\)
0.938463 0.345380i \(-0.112250\pi\)
\(882\) 0 0
\(883\) 39.9687i 1.34506i 0.740072 + 0.672528i \(0.234791\pi\)
−0.740072 + 0.672528i \(0.765209\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −16.6510 28.8404i −0.559085 0.968364i −0.997573 0.0696271i \(-0.977819\pi\)
0.438488 0.898737i \(-0.355514\pi\)
\(888\) 0 0
\(889\) 11.3704 17.1342i 0.381350 0.574664i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1.32269 + 2.29097i −0.0442621 + 0.0766643i
\(894\) 0 0
\(895\) −3.49181 + 6.04798i −0.116718 + 0.202162i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −3.21505 5.56863i −0.107228 0.185724i
\(900\) 0 0
\(901\) −87.0772 50.2741i −2.90096 1.67487i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −1.02522 1.77574i −0.0340796 0.0590276i
\(906\) 0 0
\(907\) −1.48209 0.855683i −0.0492119 0.0284125i 0.475192 0.879882i \(-0.342379\pi\)
−0.524404 + 0.851470i \(0.675712\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −7.22479 + 4.17123i −0.239368 + 0.138199i −0.614886 0.788616i \(-0.710798\pi\)
0.375518 + 0.926815i \(0.377465\pi\)
\(912\) 0 0
\(913\) 29.9597i 0.991520i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.31499 + 21.0865i −0.0434248 + 0.696337i
\(918\) 0 0
\(919\) 13.4897 + 7.78828i 0.444984 + 0.256911i 0.705709 0.708501i \(-0.250628\pi\)
−0.260726 + 0.965413i \(0.583962\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 3.63226 6.29126i 0.119557 0.207079i
\(924\) 0 0
\(925\) −11.9811 20.7519i −0.393937 0.682318i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 2.44492i 0.0802152i −0.999195 0.0401076i \(-0.987230\pi\)
0.999195 0.0401076i \(-0.0127701\pi\)
\(930\) 0 0
\(931\) 6.58881 + 0.824987i 0.215939 + 0.0270379i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −5.54468 + 3.20122i −0.181330 + 0.104691i
\(936\) 0 0
\(937\) 2.32069i 0.0758137i 0.999281 + 0.0379069i \(0.0120690\pi\)
−0.999281 + 0.0379069i \(0.987931\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 15.9023i 0.518400i 0.965824 + 0.259200i \(0.0834588\pi\)
−0.965824 + 0.259200i \(0.916541\pi\)
\(942\) 0 0
\(943\) 0.217069 0.00706874
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 36.3372i 1.18080i −0.807111 0.590400i \(-0.798970\pi\)
0.807111 0.590400i \(-0.201030\pi\)
\(948\) 0 0
\(949\) −2.94186 −0.0954969
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 10.1790 0.329730 0.164865 0.986316i \(-0.447281\pi\)
0.164865 + 0.986316i \(0.447281\pi\)
\(954\) 0 0
\(955\) −1.15348 1.99789i −0.0373259 0.0646503i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −20.4920 + 10.1864i −0.661722 + 0.328936i
\(960\) 0 0
\(961\) −26.4755 −0.854048
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 4.75668 2.74627i 0.153123 0.0884055i
\(966\) 0 0
\(967\) 17.1689 + 9.91247i 0.552115 + 0.318764i 0.749974 0.661467i \(-0.230066\pi\)
−0.197860 + 0.980230i \(0.563399\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −12.7738 + 22.1249i −0.409931 + 0.710021i −0.994882 0.101048i \(-0.967780\pi\)
0.584951 + 0.811069i \(0.301114\pi\)
\(972\) 0 0
\(973\) −34.0911 + 16.9464i −1.09291 + 0.543276i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 22.7971 0.729343 0.364671 0.931136i \(-0.381181\pi\)
0.364671 + 0.931136i \(0.381181\pi\)
\(978\) 0 0
\(979\) 16.1325 + 27.9424i 0.515598 + 0.893041i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 27.9954 48.4894i 0.892914 1.54657i 0.0565482 0.998400i \(-0.481991\pi\)
0.836366 0.548172i \(-0.184676\pi\)
\(984\) 0 0
\(985\) −3.98460 + 2.30051i −0.126960 + 0.0733003i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0.970974 1.68178i 0.0308752 0.0534774i
\(990\) 0 0
\(991\) −21.3062 + 12.3011i −0.676814 + 0.390759i −0.798653 0.601791i \(-0.794454\pi\)
0.121840 + 0.992550i \(0.461121\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 3.82534 + 2.20856i 0.121272 + 0.0700162i
\(996\) 0 0
\(997\) 35.0171 + 20.2171i 1.10900 + 0.640283i 0.938571 0.345087i \(-0.112150\pi\)
0.170432 + 0.985370i \(0.445484\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.cz.g.1279.6 24
3.2 odd 2 1008.2.cz.h.607.8 yes 24
4.3 odd 2 3024.2.cz.h.1279.6 24
7.3 odd 6 3024.2.bf.g.1711.7 24
9.2 odd 6 1008.2.bf.g.943.9 yes 24
9.7 even 3 3024.2.bf.h.2287.6 24
12.11 even 2 1008.2.cz.g.607.5 yes 24
21.17 even 6 1008.2.bf.h.31.4 yes 24
28.3 even 6 3024.2.bf.h.1711.7 24
36.7 odd 6 3024.2.bf.g.2287.6 24
36.11 even 6 1008.2.bf.h.943.4 yes 24
63.38 even 6 1008.2.cz.g.367.5 yes 24
63.52 odd 6 3024.2.cz.h.2719.6 24
84.59 odd 6 1008.2.bf.g.31.9 24
252.115 even 6 inner 3024.2.cz.g.2719.6 24
252.227 odd 6 1008.2.cz.h.367.8 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.2.bf.g.31.9 24 84.59 odd 6
1008.2.bf.g.943.9 yes 24 9.2 odd 6
1008.2.bf.h.31.4 yes 24 21.17 even 6
1008.2.bf.h.943.4 yes 24 36.11 even 6
1008.2.cz.g.367.5 yes 24 63.38 even 6
1008.2.cz.g.607.5 yes 24 12.11 even 2
1008.2.cz.h.367.8 yes 24 252.227 odd 6
1008.2.cz.h.607.8 yes 24 3.2 odd 2
3024.2.bf.g.1711.7 24 7.3 odd 6
3024.2.bf.g.2287.6 24 36.7 odd 6
3024.2.bf.h.1711.7 24 28.3 even 6
3024.2.bf.h.2287.6 24 9.7 even 3
3024.2.cz.g.1279.6 24 1.1 even 1 trivial
3024.2.cz.g.2719.6 24 252.115 even 6 inner
3024.2.cz.h.1279.6 24 4.3 odd 2
3024.2.cz.h.2719.6 24 63.52 odd 6