Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3024,2,Mod(1279,3024)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3024, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 0, 2, 5]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3024.1279");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3024.cz (of order \(6\), degree \(2\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(24.1467615712\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{6})\) |
Twist minimal: | no (minimal twist has level 1008) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1279.1 | 0 | 0 | 0 | −2.87107 | + | 1.65762i | 0 | 2.01336 | + | 1.71651i | 0 | 0 | 0 | ||||||||||||||
1279.2 | 0 | 0 | 0 | −2.47441 | + | 1.42860i | 0 | 2.59845 | − | 0.498066i | 0 | 0 | 0 | ||||||||||||||
1279.3 | 0 | 0 | 0 | −2.43562 | + | 1.40621i | 0 | 0.717569 | + | 2.54659i | 0 | 0 | 0 | ||||||||||||||
1279.4 | 0 | 0 | 0 | −1.73177 | + | 0.999840i | 0 | −2.38101 | + | 1.15360i | 0 | 0 | 0 | ||||||||||||||
1279.5 | 0 | 0 | 0 | −1.53539 | + | 0.886460i | 0 | −2.64391 | − | 0.0987102i | 0 | 0 | 0 | ||||||||||||||
1279.6 | 0 | 0 | 0 | 0.243063 | − | 0.140332i | 0 | −2.20451 | − | 1.46292i | 0 | 0 | 0 | ||||||||||||||
1279.7 | 0 | 0 | 0 | 0.679706 | − | 0.392428i | 0 | 2.49091 | − | 0.891831i | 0 | 0 | 0 | ||||||||||||||
1279.8 | 0 | 0 | 0 | 1.27943 | − | 0.738680i | 0 | −1.34028 | + | 2.28115i | 0 | 0 | 0 | ||||||||||||||
1279.9 | 0 | 0 | 0 | 2.08545 | − | 1.20403i | 0 | 2.53309 | + | 0.763830i | 0 | 0 | 0 | ||||||||||||||
1279.10 | 0 | 0 | 0 | 2.10605 | − | 1.21593i | 0 | −0.347128 | − | 2.62288i | 0 | 0 | 0 | ||||||||||||||
1279.11 | 0 | 0 | 0 | 2.47996 | − | 1.43180i | 0 | −1.38867 | + | 2.25202i | 0 | 0 | 0 | ||||||||||||||
1279.12 | 0 | 0 | 0 | 3.67461 | − | 2.12154i | 0 | −2.04787 | − | 1.67518i | 0 | 0 | 0 | ||||||||||||||
2719.1 | 0 | 0 | 0 | −2.87107 | − | 1.65762i | 0 | 2.01336 | − | 1.71651i | 0 | 0 | 0 | ||||||||||||||
2719.2 | 0 | 0 | 0 | −2.47441 | − | 1.42860i | 0 | 2.59845 | + | 0.498066i | 0 | 0 | 0 | ||||||||||||||
2719.3 | 0 | 0 | 0 | −2.43562 | − | 1.40621i | 0 | 0.717569 | − | 2.54659i | 0 | 0 | 0 | ||||||||||||||
2719.4 | 0 | 0 | 0 | −1.73177 | − | 0.999840i | 0 | −2.38101 | − | 1.15360i | 0 | 0 | 0 | ||||||||||||||
2719.5 | 0 | 0 | 0 | −1.53539 | − | 0.886460i | 0 | −2.64391 | + | 0.0987102i | 0 | 0 | 0 | ||||||||||||||
2719.6 | 0 | 0 | 0 | 0.243063 | + | 0.140332i | 0 | −2.20451 | + | 1.46292i | 0 | 0 | 0 | ||||||||||||||
2719.7 | 0 | 0 | 0 | 0.679706 | + | 0.392428i | 0 | 2.49091 | + | 0.891831i | 0 | 0 | 0 | ||||||||||||||
2719.8 | 0 | 0 | 0 | 1.27943 | + | 0.738680i | 0 | −1.34028 | − | 2.28115i | 0 | 0 | 0 | ||||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
252.bj | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 3024.2.cz.g | 24 | |
3.b | odd | 2 | 1 | 1008.2.cz.h | yes | 24 | |
4.b | odd | 2 | 1 | 3024.2.cz.h | 24 | ||
7.d | odd | 6 | 1 | 3024.2.bf.g | 24 | ||
9.c | even | 3 | 1 | 3024.2.bf.h | 24 | ||
9.d | odd | 6 | 1 | 1008.2.bf.g | ✓ | 24 | |
12.b | even | 2 | 1 | 1008.2.cz.g | yes | 24 | |
21.g | even | 6 | 1 | 1008.2.bf.h | yes | 24 | |
28.f | even | 6 | 1 | 3024.2.bf.h | 24 | ||
36.f | odd | 6 | 1 | 3024.2.bf.g | 24 | ||
36.h | even | 6 | 1 | 1008.2.bf.h | yes | 24 | |
63.i | even | 6 | 1 | 1008.2.cz.g | yes | 24 | |
63.t | odd | 6 | 1 | 3024.2.cz.h | 24 | ||
84.j | odd | 6 | 1 | 1008.2.bf.g | ✓ | 24 | |
252.r | odd | 6 | 1 | 1008.2.cz.h | yes | 24 | |
252.bj | even | 6 | 1 | inner | 3024.2.cz.g | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1008.2.bf.g | ✓ | 24 | 9.d | odd | 6 | 1 | |
1008.2.bf.g | ✓ | 24 | 84.j | odd | 6 | 1 | |
1008.2.bf.h | yes | 24 | 21.g | even | 6 | 1 | |
1008.2.bf.h | yes | 24 | 36.h | even | 6 | 1 | |
1008.2.cz.g | yes | 24 | 12.b | even | 2 | 1 | |
1008.2.cz.g | yes | 24 | 63.i | even | 6 | 1 | |
1008.2.cz.h | yes | 24 | 3.b | odd | 2 | 1 | |
1008.2.cz.h | yes | 24 | 252.r | odd | 6 | 1 | |
3024.2.bf.g | 24 | 7.d | odd | 6 | 1 | ||
3024.2.bf.g | 24 | 36.f | odd | 6 | 1 | ||
3024.2.bf.h | 24 | 9.c | even | 3 | 1 | ||
3024.2.bf.h | 24 | 28.f | even | 6 | 1 | ||
3024.2.cz.g | 24 | 1.a | even | 1 | 1 | trivial | |
3024.2.cz.g | 24 | 252.bj | even | 6 | 1 | inner | |
3024.2.cz.h | 24 | 4.b | odd | 2 | 1 | ||
3024.2.cz.h | 24 | 63.t | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3024, [\chi])\):
\( T_{5}^{24} - 3 T_{5}^{23} - 33 T_{5}^{22} + 108 T_{5}^{21} + 723 T_{5}^{20} - 2178 T_{5}^{19} + \cdots + 4782969 \)
|
\( T_{11}^{24} + 9 T_{11}^{23} - 36 T_{11}^{22} - 567 T_{11}^{21} + 984 T_{11}^{20} + 20682 T_{11}^{19} + \cdots + 109592116209 \)
|