L(s) = 1 | + (0.243 − 0.140i)5-s + (−2.20 − 1.46i)7-s + (−2.44 − 1.41i)11-s + (4.06 + 2.34i)13-s + (7.00 − 4.04i)17-s + (0.474 − 0.821i)19-s + (−0.339 + 0.196i)23-s + (−2.46 + 4.26i)25-s + (−1.51 − 2.61i)29-s + 2.12·31-s + (−0.741 − 0.0462i)35-s + (−2.43 + 4.21i)37-s + (−0.478 − 0.276i)41-s + (−4.28 + 2.47i)43-s − 2.78·47-s + ⋯ |
L(s) = 1 | + (0.108 − 0.0627i)5-s + (−0.833 − 0.552i)7-s + (−0.736 − 0.425i)11-s + (1.12 + 0.651i)13-s + (1.69 − 0.980i)17-s + (0.108 − 0.188i)19-s + (−0.0708 + 0.0409i)23-s + (−0.492 + 0.852i)25-s + (−0.280 − 0.486i)29-s + 0.382·31-s + (−0.125 − 0.00781i)35-s + (−0.400 + 0.693i)37-s + (−0.0748 − 0.0431i)41-s + (−0.653 + 0.377i)43-s − 0.406·47-s + ⋯ |
Λ(s)=(=(3024s/2ΓC(s)L(s)(0.0138+0.999i)Λ(2−s)
Λ(s)=(=(3024s/2ΓC(s+1/2)L(s)(0.0138+0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
3024
= 24⋅33⋅7
|
Sign: |
0.0138+0.999i
|
Analytic conductor: |
24.1467 |
Root analytic conductor: |
4.91393 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3024(1279,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3024, ( :1/2), 0.0138+0.999i)
|
Particular Values
L(1) |
≈ |
1.384328193 |
L(21) |
≈ |
1.384328193 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(2.20+1.46i)T |
good | 5 | 1+(−0.243+0.140i)T+(2.5−4.33i)T2 |
| 11 | 1+(2.44+1.41i)T+(5.5+9.52i)T2 |
| 13 | 1+(−4.06−2.34i)T+(6.5+11.2i)T2 |
| 17 | 1+(−7.00+4.04i)T+(8.5−14.7i)T2 |
| 19 | 1+(−0.474+0.821i)T+(−9.5−16.4i)T2 |
| 23 | 1+(0.339−0.196i)T+(11.5−19.9i)T2 |
| 29 | 1+(1.51+2.61i)T+(−14.5+25.1i)T2 |
| 31 | 1−2.12T+31T2 |
| 37 | 1+(2.43−4.21i)T+(−18.5−32.0i)T2 |
| 41 | 1+(0.478+0.276i)T+(20.5+35.5i)T2 |
| 43 | 1+(4.28−2.47i)T+(21.5−37.2i)T2 |
| 47 | 1+2.78T+47T2 |
| 53 | 1+(6.21+10.7i)T+(−26.5+45.8i)T2 |
| 59 | 1−11.4T+59T2 |
| 61 | 1+11.1iT−61T2 |
| 67 | 1+9.07iT−67T2 |
| 71 | 1+1.54iT−71T2 |
| 73 | 1+(0.542−0.313i)T+(36.5−63.2i)T2 |
| 79 | 1+15.4iT−79T2 |
| 83 | 1+(5.30+9.19i)T+(−41.5+71.8i)T2 |
| 89 | 1+(9.90+5.71i)T+(44.5+77.0i)T2 |
| 97 | 1+(−13.6+7.86i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.461328782071546993908974724571, −7.79691447584164230282053603773, −7.03450327742547144775732447771, −6.25210327801493099917928842868, −5.54676416848434623389337042776, −4.69741291428179515898598487330, −3.44279450923308829278768877325, −3.21411929682989643960839388615, −1.68487591146575881543419791219, −0.47975206555921238289392700455,
1.17009717062827637818257306261, 2.44134413032670403458142816785, 3.32663626236048327776024595987, 4.00394279279654985557507936603, 5.41651851633680133973616334426, 5.73805395590846554418029826170, 6.52547964647405533618466273540, 7.49923128310235814499308563565, 8.229527396233165004214066388097, 8.759821812544840003416044023726