L(s) = 1 | + 1.65·2-s − 1.97·3-s + 0.737·4-s − 3.26·6-s − 2.24·7-s − 2.08·8-s + 0.899·9-s − 1.45·12-s − 3.69·13-s − 3.71·14-s − 4.93·16-s − 2.22·17-s + 1.48·18-s + 5.28·19-s + 4.42·21-s − 3.85·23-s + 4.12·24-s − 6.12·26-s + 4.14·27-s − 1.65·28-s + 0.188·29-s + 0.686·31-s − 3.98·32-s − 3.68·34-s + 0.663·36-s + 2.59·37-s + 8.74·38-s + ⋯ |
L(s) = 1 | + 1.16·2-s − 1.14·3-s + 0.368·4-s − 1.33·6-s − 0.847·7-s − 0.738·8-s + 0.299·9-s − 0.420·12-s − 1.02·13-s − 0.991·14-s − 1.23·16-s − 0.539·17-s + 0.350·18-s + 1.21·19-s + 0.966·21-s − 0.803·23-s + 0.841·24-s − 1.20·26-s + 0.798·27-s − 0.312·28-s + 0.0349·29-s + 0.123·31-s − 0.703·32-s − 0.631·34-s + 0.110·36-s + 0.426·37-s + 1.41·38-s + ⋯ |
Λ(s)=(=(3025s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(3025s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.109368232 |
L(21) |
≈ |
1.109368232 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 11 | 1 |
good | 2 | 1−1.65T+2T2 |
| 3 | 1+1.97T+3T2 |
| 7 | 1+2.24T+7T2 |
| 13 | 1+3.69T+13T2 |
| 17 | 1+2.22T+17T2 |
| 19 | 1−5.28T+19T2 |
| 23 | 1+3.85T+23T2 |
| 29 | 1−0.188T+29T2 |
| 31 | 1−0.686T+31T2 |
| 37 | 1−2.59T+37T2 |
| 41 | 1−7.91T+41T2 |
| 43 | 1−8.41T+43T2 |
| 47 | 1+12.0T+47T2 |
| 53 | 1−12.6T+53T2 |
| 59 | 1+0.343T+59T2 |
| 61 | 1−1.73T+61T2 |
| 67 | 1−0.650T+67T2 |
| 71 | 1−4.64T+71T2 |
| 73 | 1+8.85T+73T2 |
| 79 | 1+7.23T+79T2 |
| 83 | 1−3.18T+83T2 |
| 89 | 1−9.92T+89T2 |
| 97 | 1−2.26T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.870146286628711338609912110373, −7.66811660495990753831464835826, −6.84360758364492796409815979189, −6.15397960854221345059547004373, −5.63821408717182862189975139252, −4.92227875479514850636791271142, −4.24511460275724949214529443714, −3.25415728288556989093670153317, −2.43566478594833706154381027098, −0.53999591252574595235015351304,
0.53999591252574595235015351304, 2.43566478594833706154381027098, 3.25415728288556989093670153317, 4.24511460275724949214529443714, 4.92227875479514850636791271142, 5.63821408717182862189975139252, 6.15397960854221345059547004373, 6.84360758364492796409815979189, 7.66811660495990753831464835826, 8.870146286628711338609912110373