Properties

Label 2-55e2-1.1-c1-0-19
Degree $2$
Conductor $3025$
Sign $1$
Analytic cond. $24.1547$
Root an. cond. $4.91474$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.65·2-s − 1.97·3-s + 0.737·4-s − 3.26·6-s − 2.24·7-s − 2.08·8-s + 0.899·9-s − 1.45·12-s − 3.69·13-s − 3.71·14-s − 4.93·16-s − 2.22·17-s + 1.48·18-s + 5.28·19-s + 4.42·21-s − 3.85·23-s + 4.12·24-s − 6.12·26-s + 4.14·27-s − 1.65·28-s + 0.188·29-s + 0.686·31-s − 3.98·32-s − 3.68·34-s + 0.663·36-s + 2.59·37-s + 8.74·38-s + ⋯
L(s)  = 1  + 1.16·2-s − 1.14·3-s + 0.368·4-s − 1.33·6-s − 0.847·7-s − 0.738·8-s + 0.299·9-s − 0.420·12-s − 1.02·13-s − 0.991·14-s − 1.23·16-s − 0.539·17-s + 0.350·18-s + 1.21·19-s + 0.966·21-s − 0.803·23-s + 0.841·24-s − 1.20·26-s + 0.798·27-s − 0.312·28-s + 0.0349·29-s + 0.123·31-s − 0.703·32-s − 0.631·34-s + 0.110·36-s + 0.426·37-s + 1.41·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3025 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3025\)    =    \(5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(24.1547\)
Root analytic conductor: \(4.91474\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3025,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.109368232\)
\(L(\frac12)\) \(\approx\) \(1.109368232\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
11 \( 1 \)
good2 \( 1 - 1.65T + 2T^{2} \)
3 \( 1 + 1.97T + 3T^{2} \)
7 \( 1 + 2.24T + 7T^{2} \)
13 \( 1 + 3.69T + 13T^{2} \)
17 \( 1 + 2.22T + 17T^{2} \)
19 \( 1 - 5.28T + 19T^{2} \)
23 \( 1 + 3.85T + 23T^{2} \)
29 \( 1 - 0.188T + 29T^{2} \)
31 \( 1 - 0.686T + 31T^{2} \)
37 \( 1 - 2.59T + 37T^{2} \)
41 \( 1 - 7.91T + 41T^{2} \)
43 \( 1 - 8.41T + 43T^{2} \)
47 \( 1 + 12.0T + 47T^{2} \)
53 \( 1 - 12.6T + 53T^{2} \)
59 \( 1 + 0.343T + 59T^{2} \)
61 \( 1 - 1.73T + 61T^{2} \)
67 \( 1 - 0.650T + 67T^{2} \)
71 \( 1 - 4.64T + 71T^{2} \)
73 \( 1 + 8.85T + 73T^{2} \)
79 \( 1 + 7.23T + 79T^{2} \)
83 \( 1 - 3.18T + 83T^{2} \)
89 \( 1 - 9.92T + 89T^{2} \)
97 \( 1 - 2.26T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.870146286628711338609912110373, −7.66811660495990753831464835826, −6.84360758364492796409815979189, −6.15397960854221345059547004373, −5.63821408717182862189975139252, −4.92227875479514850636791271142, −4.24511460275724949214529443714, −3.25415728288556989093670153317, −2.43566478594833706154381027098, −0.53999591252574595235015351304, 0.53999591252574595235015351304, 2.43566478594833706154381027098, 3.25415728288556989093670153317, 4.24511460275724949214529443714, 4.92227875479514850636791271142, 5.63821408717182862189975139252, 6.15397960854221345059547004373, 6.84360758364492796409815979189, 7.66811660495990753831464835826, 8.870146286628711338609912110373

Graph of the $Z$-function along the critical line