gp: [N,k,chi] = [3025,2,Mod(1,3025)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3025, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3025.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [8,0,0,2,0,6]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 7 1,\beta_1,\ldots,\beta_{7} 1 , β 1 , … , β 7 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 8 − 9 x 6 + 27 x 4 − 31 x 2 + 11 x^{8} - 9x^{6} + 27x^{4} - 31x^{2} + 11 x 8 − 9 x 6 + 2 7 x 4 − 3 1 x 2 + 1 1
x^8 - 9*x^6 + 27*x^4 - 31*x^2 + 11
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
ν 2 − 2 \nu^{2} - 2 ν 2 − 2
v^2 - 2
β 3 \beta_{3} β 3 = = =
ν 4 − 5 ν 2 + 4 \nu^{4} - 5\nu^{2} + 4 ν 4 − 5 ν 2 + 4
v^4 - 5*v^2 + 4
β 4 \beta_{4} β 4 = = =
− ν 7 + 7 ν 5 − 13 ν 3 + 5 ν -\nu^{7} + 7\nu^{5} - 13\nu^{3} + 5\nu − ν 7 + 7 ν 5 − 1 3 ν 3 + 5 ν
-v^7 + 7*v^5 - 13*v^3 + 5*v
β 5 \beta_{5} β 5 = = =
ν 6 − 7 ν 4 + 14 ν 2 − 8 \nu^{6} - 7\nu^{4} + 14\nu^{2} - 8 ν 6 − 7 ν 4 + 1 4 ν 2 − 8
v^6 - 7*v^4 + 14*v^2 - 8
β 6 \beta_{6} β 6 = = =
ν 7 − 7 ν 5 + 14 ν 3 − 8 ν \nu^{7} - 7\nu^{5} + 14\nu^{3} - 8\nu ν 7 − 7 ν 5 + 1 4 ν 3 − 8 ν
v^7 - 7*v^5 + 14*v^3 - 8*v
β 7 \beta_{7} β 7 = = =
− ν 7 + 8 ν 5 − 19 ν 3 + 12 ν -\nu^{7} + 8\nu^{5} - 19\nu^{3} + 12\nu − ν 7 + 8 ν 5 − 1 9 ν 3 + 1 2 ν
-v^7 + 8*v^5 - 19*v^3 + 12*v
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 2 + 2 \beta_{2} + 2 β 2 + 2
b2 + 2
ν 3 \nu^{3} ν 3 = = =
β 6 + β 4 + 3 β 1 \beta_{6} + \beta_{4} + 3\beta_1 β 6 + β 4 + 3 β 1
b6 + b4 + 3*b1
ν 4 \nu^{4} ν 4 = = =
β 3 + 5 β 2 + 6 \beta_{3} + 5\beta_{2} + 6 β 3 + 5 β 2 + 6
b3 + 5*b2 + 6
ν 5 \nu^{5} ν 5 = = =
β 7 + 6 β 6 + 5 β 4 + 11 β 1 \beta_{7} + 6\beta_{6} + 5\beta_{4} + 11\beta_1 β 7 + 6 β 6 + 5 β 4 + 1 1 β 1
b7 + 6*b6 + 5*b4 + 11*b1
ν 6 \nu^{6} ν 6 = = =
β 5 + 7 β 3 + 21 β 2 + 22 \beta_{5} + 7\beta_{3} + 21\beta_{2} + 22 β 5 + 7 β 3 + 2 1 β 2 + 2 2
b5 + 7*b3 + 21*b2 + 22
ν 7 \nu^{7} ν 7 = = =
7 β 7 + 29 β 6 + 21 β 4 + 43 β 1 7\beta_{7} + 29\beta_{6} + 21\beta_{4} + 43\beta_1 7 β 7 + 2 9 β 6 + 2 1 β 4 + 4 3 β 1
7*b7 + 29*b6 + 21*b4 + 43*b1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
5 5 5
− 1 -1 − 1
11 11 1 1
+ 1 +1 + 1
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 3025 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(3025)) S 2 n e w ( Γ 0 ( 3 0 2 5 ) ) :
T 2 8 − 9 T 2 6 + 27 T 2 4 − 31 T 2 2 + 11 T_{2}^{8} - 9T_{2}^{6} + 27T_{2}^{4} - 31T_{2}^{2} + 11 T 2 8 − 9 T 2 6 + 2 7 T 2 4 − 3 1 T 2 2 + 1 1
T2^8 - 9*T2^6 + 27*T2^4 - 31*T2^2 + 11
T 3 8 − 14 T 3 6 + 62 T 3 4 − 91 T 3 2 + 11 T_{3}^{8} - 14T_{3}^{6} + 62T_{3}^{4} - 91T_{3}^{2} + 11 T 3 8 − 1 4 T 3 6 + 6 2 T 3 4 − 9 1 T 3 2 + 1 1
T3^8 - 14*T3^6 + 62*T3^4 - 91*T3^2 + 11
T 19 4 − 6 T 19 3 − 4 T 19 2 + 39 T 19 + 11 T_{19}^{4} - 6T_{19}^{3} - 4T_{19}^{2} + 39T_{19} + 11 T 1 9 4 − 6 T 1 9 3 − 4 T 1 9 2 + 3 9 T 1 9 + 1 1
T19^4 - 6*T19^3 - 4*T19^2 + 39*T19 + 11
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 8 − 9 T 6 + ⋯ + 11 T^{8} - 9 T^{6} + \cdots + 11 T 8 − 9 T 6 + ⋯ + 1 1
T^8 - 9*T^6 + 27*T^4 - 31*T^2 + 11
3 3 3
T 8 − 14 T 6 + ⋯ + 11 T^{8} - 14 T^{6} + \cdots + 11 T 8 − 1 4 T 6 + ⋯ + 1 1
T^8 - 14*T^6 + 62*T^4 - 91*T^2 + 11
5 5 5
T 8 T^{8} T 8
T^8
7 7 7
T 8 − 13 T 6 + ⋯ + 11 T^{8} - 13 T^{6} + \cdots + 11 T 8 − 1 3 T 6 + ⋯ + 1 1
T^8 - 13*T^6 + 49*T^4 - 47*T^2 + 11
11 11 1 1
T 8 T^{8} T 8
T^8
13 13 1 3
T 8 − 45 T 6 + ⋯ + 6875 T^{8} - 45 T^{6} + \cdots + 6875 T 8 − 4 5 T 6 + ⋯ + 6 8 7 5
T^8 - 45*T^6 + 675*T^4 - 3875*T^2 + 6875
17 17 1 7
T 8 − 81 T 6 + ⋯ + 40931 T^{8} - 81 T^{6} + \cdots + 40931 T 8 − 8 1 T 6 + ⋯ + 4 0 9 3 1
T^8 - 81*T^6 + 1842*T^4 - 15524*T^2 + 40931
19 19 1 9
( T 4 − 6 T 3 − 4 T 2 + ⋯ + 11 ) 2 (T^{4} - 6 T^{3} - 4 T^{2} + \cdots + 11)^{2} ( T 4 − 6 T 3 − 4 T 2 + ⋯ + 1 1 ) 2
(T^4 - 6*T^3 - 4*T^2 + 39*T + 11)^2
23 23 2 3
T 8 − 99 T 6 + ⋯ + 26411 T^{8} - 99 T^{6} + \cdots + 26411 T 8 − 9 9 T 6 + ⋯ + 2 6 4 1 1
T^8 - 99*T^6 + 2232*T^4 - 16366*T^2 + 26411
29 29 2 9
( T 4 − 12 T 3 + ⋯ + 11 ) 2 (T^{4} - 12 T^{3} + \cdots + 11)^{2} ( T 4 − 1 2 T 3 + ⋯ + 1 1 ) 2
(T^4 - 12*T^3 + 48*T^2 - 67*T + 11)^2
31 31 3 1
( T 4 − 7 T 3 + 5 T 2 + ⋯ − 1 ) 2 (T^{4} - 7 T^{3} + 5 T^{2} + \cdots - 1)^{2} ( T 4 − 7 T 3 + 5 T 2 + ⋯ − 1 ) 2
(T^4 - 7*T^3 + 5*T^2 + T - 1)^2
37 37 3 7
T 8 − 101 T 6 + ⋯ + 3971 T^{8} - 101 T^{6} + \cdots + 3971 T 8 − 1 0 1 T 6 + ⋯ + 3 9 7 1
T^8 - 101*T^6 + 2822*T^4 - 15304*T^2 + 3971
41 41 4 1
( T 4 − 17 T 3 + ⋯ − 1969 ) 2 (T^{4} - 17 T^{3} + \cdots - 1969)^{2} ( T 4 − 1 7 T 3 + ⋯ − 1 9 6 9 ) 2
(T^4 - 17*T^3 + 48*T^2 + 438*T - 1969)^2
43 43 4 3
T 8 − 173 T 6 + ⋯ + 212531 T^{8} - 173 T^{6} + \cdots + 212531 T 8 − 1 7 3 T 6 + ⋯ + 2 1 2 5 3 1
T^8 - 173*T^6 + 8319*T^4 - 79707*T^2 + 212531
47 47 4 7
T 8 − 191 T 6 + ⋯ + 244211 T^{8} - 191 T^{6} + \cdots + 244211 T 8 − 1 9 1 T 6 + ⋯ + 2 4 4 2 1 1
T^8 - 191*T^6 + 7351*T^4 - 90271*T^2 + 244211
53 53 5 3
T 8 − 249 T 6 + ⋯ + 489731 T^{8} - 249 T^{6} + \cdots + 489731 T 8 − 2 4 9 T 6 + ⋯ + 4 8 9 7 3 1
T^8 - 249*T^6 + 15237*T^4 - 164921*T^2 + 489731
59 59 5 9
( T 4 + 3 T 3 − 75 T 2 + ⋯ − 1 ) 2 (T^{4} + 3 T^{3} - 75 T^{2} + \cdots - 1)^{2} ( T 4 + 3 T 3 − 7 5 T 2 + ⋯ − 1 ) 2
(T^4 + 3*T^3 - 75*T^2 - 29*T - 1)^2
61 61 6 1
( T 4 − 10 T 3 + ⋯ + 209 ) 2 (T^{4} - 10 T^{3} + \cdots + 209)^{2} ( T 4 − 1 0 T 3 + ⋯ + 2 0 9 ) 2
(T^4 - 10*T^3 - 61*T^2 + 10*T + 209)^2
67 67 6 7
T 8 − 149 T 6 + ⋯ + 18491 T^{8} - 149 T^{6} + \cdots + 18491 T 8 − 1 4 9 T 6 + ⋯ + 1 8 4 9 1
T^8 - 149*T^6 + 5736*T^4 - 46104*T^2 + 18491
71 71 7 1
( T 4 + 21 T 3 + ⋯ − 2511 ) 2 (T^{4} + 21 T^{3} + \cdots - 2511)^{2} ( T 4 + 2 1 T 3 + ⋯ − 2 5 1 1 ) 2
(T^4 + 21*T^3 + 90*T^2 - 432*T - 2511)^2
73 73 7 3
T 8 − 297 T 6 + ⋯ + 1279091 T^{8} - 297 T^{6} + \cdots + 1279091 T 8 − 2 9 7 T 6 + ⋯ + 1 2 7 9 0 9 1
T^8 - 297*T^6 + 25504*T^4 - 671988*T^2 + 1279091
79 79 7 9
( T 4 − 8 T 3 + ⋯ − 319 ) 2 (T^{4} - 8 T^{3} + \cdots - 319)^{2} ( T 4 − 8 T 3 + ⋯ − 3 1 9 ) 2
(T^4 - 8*T^3 - 52*T^2 + 377*T - 319)^2
83 83 8 3
T 8 − 111 T 6 + ⋯ + 212531 T^{8} - 111 T^{6} + \cdots + 212531 T 8 − 1 1 1 T 6 + ⋯ + 2 1 2 5 3 1
T^8 - 111*T^6 + 3931*T^4 - 50451*T^2 + 212531
89 89 8 9
( T 4 + 6 T 3 + ⋯ + 1871 ) 2 (T^{4} + 6 T^{3} + \cdots + 1871)^{2} ( T 4 + 6 T 3 + ⋯ + 1 8 7 1 ) 2
(T^4 + 6*T^3 - 128*T^2 - 486*T + 1871)^2
97 97 9 7
T 8 − 162 T 6 + ⋯ + 161051 T^{8} - 162 T^{6} + \cdots + 161051 T 8 − 1 6 2 T 6 + ⋯ + 1 6 1 0 5 1
T^8 - 162*T^6 + 5588*T^4 - 55902*T^2 + 161051
show more
show less