Properties

Label 3025.2.a.bl
Level $3025$
Weight $2$
Character orbit 3025.a
Self dual yes
Analytic conductor $24.155$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3025,2,Mod(1,3025)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3025, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3025.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3025 = 5^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3025.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.1547466114\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.8.1480160000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 9x^{6} + 27x^{4} - 31x^{2} + 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{7} + \beta_{6} + \beta_1) q^{3} + \beta_{2} q^{4} + (\beta_{5} + 2 \beta_{3} + \beta_{2} + 2) q^{6} - \beta_{4} q^{7} + (\beta_{6} + \beta_{4} - \beta_1) q^{8} + ( - \beta_{5} + \beta_{3} + 2 \beta_{2}) q^{9}+ \cdots + ( - 2 \beta_{7} - 2 \beta_{6} + \cdots - 5 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{4} + 6 q^{6} + 4 q^{9} - 4 q^{14} - 22 q^{16} + 12 q^{19} + 4 q^{21} + 2 q^{24} + 10 q^{26} + 24 q^{29} + 14 q^{31} + 8 q^{34} + 20 q^{36} + 30 q^{39} + 34 q^{41} + 24 q^{46} - 30 q^{49} + 54 q^{51}+ \cdots - 8 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 9x^{6} + 27x^{4} - 31x^{2} + 11 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{4} - 5\nu^{2} + 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( -\nu^{7} + 7\nu^{5} - 13\nu^{3} + 5\nu \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{6} - 7\nu^{4} + 14\nu^{2} - 8 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( \nu^{7} - 7\nu^{5} + 14\nu^{3} - 8\nu \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( -\nu^{7} + 8\nu^{5} - 19\nu^{3} + 12\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{6} + \beta_{4} + 3\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{3} + 5\beta_{2} + 6 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{7} + 6\beta_{6} + 5\beta_{4} + 11\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( \beta_{5} + 7\beta_{3} + 21\beta_{2} + 22 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 7\beta_{7} + 29\beta_{6} + 21\beta_{4} + 43\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.02368
−1.65458
−1.23399
−0.802699
0.802699
1.23399
1.65458
2.02368
−2.02368 −2.62059 2.09529 0 5.30325 0.965823 −0.192845 3.86752 0
1.2 −1.65458 1.97479 0.737640 0 −3.26745 2.24307 2.08868 0.899788 0
1.3 −1.23399 0.363982 −0.477260 0 −0.449152 −2.58558 3.05692 −2.86752 0
1.4 −0.802699 −1.76074 −1.35567 0 1.41335 −0.592103 2.69360 0.100212 0
1.5 0.802699 1.76074 −1.35567 0 1.41335 0.592103 −2.69360 0.100212 0
1.6 1.23399 −0.363982 −0.477260 0 −0.449152 2.58558 −3.05692 −2.86752 0
1.7 1.65458 −1.97479 0.737640 0 −3.26745 −2.24307 −2.08868 0.899788 0
1.8 2.02368 2.62059 2.09529 0 5.30325 −0.965823 0.192845 3.86752 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(11\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3025.2.a.bl 8
5.b even 2 1 inner 3025.2.a.bl 8
5.c odd 4 2 605.2.b.g 8
11.b odd 2 1 3025.2.a.bk 8
11.c even 5 2 275.2.h.d 16
55.d odd 2 1 3025.2.a.bk 8
55.e even 4 2 605.2.b.f 8
55.j even 10 2 275.2.h.d 16
55.k odd 20 4 55.2.j.a 16
55.k odd 20 4 605.2.j.h 16
55.l even 20 4 605.2.j.d 16
55.l even 20 4 605.2.j.g 16
165.v even 20 4 495.2.ba.a 16
220.v even 20 4 880.2.cd.c 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.2.j.a 16 55.k odd 20 4
275.2.h.d 16 11.c even 5 2
275.2.h.d 16 55.j even 10 2
495.2.ba.a 16 165.v even 20 4
605.2.b.f 8 55.e even 4 2
605.2.b.g 8 5.c odd 4 2
605.2.j.d 16 55.l even 20 4
605.2.j.g 16 55.l even 20 4
605.2.j.h 16 55.k odd 20 4
880.2.cd.c 16 220.v even 20 4
3025.2.a.bk 8 11.b odd 2 1
3025.2.a.bk 8 55.d odd 2 1
3025.2.a.bl 8 1.a even 1 1 trivial
3025.2.a.bl 8 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3025))\):

\( T_{2}^{8} - 9T_{2}^{6} + 27T_{2}^{4} - 31T_{2}^{2} + 11 \) Copy content Toggle raw display
\( T_{3}^{8} - 14T_{3}^{6} + 62T_{3}^{4} - 91T_{3}^{2} + 11 \) Copy content Toggle raw display
\( T_{19}^{4} - 6T_{19}^{3} - 4T_{19}^{2} + 39T_{19} + 11 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} - 9 T^{6} + \cdots + 11 \) Copy content Toggle raw display
$3$ \( T^{8} - 14 T^{6} + \cdots + 11 \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( T^{8} - 13 T^{6} + \cdots + 11 \) Copy content Toggle raw display
$11$ \( T^{8} \) Copy content Toggle raw display
$13$ \( T^{8} - 45 T^{6} + \cdots + 6875 \) Copy content Toggle raw display
$17$ \( T^{8} - 81 T^{6} + \cdots + 40931 \) Copy content Toggle raw display
$19$ \( (T^{4} - 6 T^{3} - 4 T^{2} + \cdots + 11)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} - 99 T^{6} + \cdots + 26411 \) Copy content Toggle raw display
$29$ \( (T^{4} - 12 T^{3} + \cdots + 11)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} - 7 T^{3} + 5 T^{2} + \cdots - 1)^{2} \) Copy content Toggle raw display
$37$ \( T^{8} - 101 T^{6} + \cdots + 3971 \) Copy content Toggle raw display
$41$ \( (T^{4} - 17 T^{3} + \cdots - 1969)^{2} \) Copy content Toggle raw display
$43$ \( T^{8} - 173 T^{6} + \cdots + 212531 \) Copy content Toggle raw display
$47$ \( T^{8} - 191 T^{6} + \cdots + 244211 \) Copy content Toggle raw display
$53$ \( T^{8} - 249 T^{6} + \cdots + 489731 \) Copy content Toggle raw display
$59$ \( (T^{4} + 3 T^{3} - 75 T^{2} + \cdots - 1)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} - 10 T^{3} + \cdots + 209)^{2} \) Copy content Toggle raw display
$67$ \( T^{8} - 149 T^{6} + \cdots + 18491 \) Copy content Toggle raw display
$71$ \( (T^{4} + 21 T^{3} + \cdots - 2511)^{2} \) Copy content Toggle raw display
$73$ \( T^{8} - 297 T^{6} + \cdots + 1279091 \) Copy content Toggle raw display
$79$ \( (T^{4} - 8 T^{3} + \cdots - 319)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} - 111 T^{6} + \cdots + 212531 \) Copy content Toggle raw display
$89$ \( (T^{4} + 6 T^{3} + \cdots + 1871)^{2} \) Copy content Toggle raw display
$97$ \( T^{8} - 162 T^{6} + \cdots + 161051 \) Copy content Toggle raw display
show more
show less