Properties

Label 3025.2.a.bl
Level 30253025
Weight 22
Character orbit 3025.a
Self dual yes
Analytic conductor 24.15524.155
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3025,2,Mod(1,3025)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3025, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3025.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 3025=52112 3025 = 5^{2} \cdot 11^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3025.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,2,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 24.154746611424.1547466114
Analytic rank: 00
Dimension: 88
Coefficient field: 8.8.1480160000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x89x6+27x431x2+11 x^{8} - 9x^{6} + 27x^{4} - 31x^{2} + 11 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 55)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+(β7+β6+β1)q3+β2q4+(β5+2β3+β2+2)q6β4q7+(β6+β4β1)q8+(β5+β3+2β2)q9++(2β72β6+5β1)q98+O(q100) q + \beta_1 q^{2} + (\beta_{7} + \beta_{6} + \beta_1) q^{3} + \beta_{2} q^{4} + (\beta_{5} + 2 \beta_{3} + \beta_{2} + 2) q^{6} - \beta_{4} q^{7} + (\beta_{6} + \beta_{4} - \beta_1) q^{8} + ( - \beta_{5} + \beta_{3} + 2 \beta_{2}) q^{9}+ \cdots + ( - 2 \beta_{7} - 2 \beta_{6} + \cdots - 5 \beta_1) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+2q4+6q6+4q94q1422q16+12q19+4q21+2q24+10q26+24q29+14q31+8q34+20q36+30q39+34q41+24q4630q49+54q51+8q96+O(q100) 8 q + 2 q^{4} + 6 q^{6} + 4 q^{9} - 4 q^{14} - 22 q^{16} + 12 q^{19} + 4 q^{21} + 2 q^{24} + 10 q^{26} + 24 q^{29} + 14 q^{31} + 8 q^{34} + 20 q^{36} + 30 q^{39} + 34 q^{41} + 24 q^{46} - 30 q^{49} + 54 q^{51}+ \cdots - 8 q^{96}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x89x6+27x431x2+11 x^{8} - 9x^{6} + 27x^{4} - 31x^{2} + 11 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν22 \nu^{2} - 2 Copy content Toggle raw display
β3\beta_{3}== ν45ν2+4 \nu^{4} - 5\nu^{2} + 4 Copy content Toggle raw display
β4\beta_{4}== ν7+7ν513ν3+5ν -\nu^{7} + 7\nu^{5} - 13\nu^{3} + 5\nu Copy content Toggle raw display
β5\beta_{5}== ν67ν4+14ν28 \nu^{6} - 7\nu^{4} + 14\nu^{2} - 8 Copy content Toggle raw display
β6\beta_{6}== ν77ν5+14ν38ν \nu^{7} - 7\nu^{5} + 14\nu^{3} - 8\nu Copy content Toggle raw display
β7\beta_{7}== ν7+8ν519ν3+12ν -\nu^{7} + 8\nu^{5} - 19\nu^{3} + 12\nu Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+2 \beta_{2} + 2 Copy content Toggle raw display
ν3\nu^{3}== β6+β4+3β1 \beta_{6} + \beta_{4} + 3\beta_1 Copy content Toggle raw display
ν4\nu^{4}== β3+5β2+6 \beta_{3} + 5\beta_{2} + 6 Copy content Toggle raw display
ν5\nu^{5}== β7+6β6+5β4+11β1 \beta_{7} + 6\beta_{6} + 5\beta_{4} + 11\beta_1 Copy content Toggle raw display
ν6\nu^{6}== β5+7β3+21β2+22 \beta_{5} + 7\beta_{3} + 21\beta_{2} + 22 Copy content Toggle raw display
ν7\nu^{7}== 7β7+29β6+21β4+43β1 7\beta_{7} + 29\beta_{6} + 21\beta_{4} + 43\beta_1 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−2.02368
−1.65458
−1.23399
−0.802699
0.802699
1.23399
1.65458
2.02368
−2.02368 −2.62059 2.09529 0 5.30325 0.965823 −0.192845 3.86752 0
1.2 −1.65458 1.97479 0.737640 0 −3.26745 2.24307 2.08868 0.899788 0
1.3 −1.23399 0.363982 −0.477260 0 −0.449152 −2.58558 3.05692 −2.86752 0
1.4 −0.802699 −1.76074 −1.35567 0 1.41335 −0.592103 2.69360 0.100212 0
1.5 0.802699 1.76074 −1.35567 0 1.41335 0.592103 −2.69360 0.100212 0
1.6 1.23399 −0.363982 −0.477260 0 −0.449152 2.58558 −3.05692 −2.86752 0
1.7 1.65458 −1.97479 0.737640 0 −3.26745 −2.24307 −2.08868 0.899788 0
1.8 2.02368 2.62059 2.09529 0 5.30325 −0.965823 0.192845 3.86752 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
55 1 -1
1111 +1 +1

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3025.2.a.bl 8
5.b even 2 1 inner 3025.2.a.bl 8
5.c odd 4 2 605.2.b.g 8
11.b odd 2 1 3025.2.a.bk 8
11.c even 5 2 275.2.h.d 16
55.d odd 2 1 3025.2.a.bk 8
55.e even 4 2 605.2.b.f 8
55.j even 10 2 275.2.h.d 16
55.k odd 20 4 55.2.j.a 16
55.k odd 20 4 605.2.j.h 16
55.l even 20 4 605.2.j.d 16
55.l even 20 4 605.2.j.g 16
165.v even 20 4 495.2.ba.a 16
220.v even 20 4 880.2.cd.c 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.2.j.a 16 55.k odd 20 4
275.2.h.d 16 11.c even 5 2
275.2.h.d 16 55.j even 10 2
495.2.ba.a 16 165.v even 20 4
605.2.b.f 8 55.e even 4 2
605.2.b.g 8 5.c odd 4 2
605.2.j.d 16 55.l even 20 4
605.2.j.g 16 55.l even 20 4
605.2.j.h 16 55.k odd 20 4
880.2.cd.c 16 220.v even 20 4
3025.2.a.bk 8 11.b odd 2 1
3025.2.a.bk 8 55.d odd 2 1
3025.2.a.bl 8 1.a even 1 1 trivial
3025.2.a.bl 8 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(3025))S_{2}^{\mathrm{new}}(\Gamma_0(3025)):

T289T26+27T2431T22+11 T_{2}^{8} - 9T_{2}^{6} + 27T_{2}^{4} - 31T_{2}^{2} + 11 Copy content Toggle raw display
T3814T36+62T3491T32+11 T_{3}^{8} - 14T_{3}^{6} + 62T_{3}^{4} - 91T_{3}^{2} + 11 Copy content Toggle raw display
T1946T1934T192+39T19+11 T_{19}^{4} - 6T_{19}^{3} - 4T_{19}^{2} + 39T_{19} + 11 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T89T6++11 T^{8} - 9 T^{6} + \cdots + 11 Copy content Toggle raw display
33 T814T6++11 T^{8} - 14 T^{6} + \cdots + 11 Copy content Toggle raw display
55 T8 T^{8} Copy content Toggle raw display
77 T813T6++11 T^{8} - 13 T^{6} + \cdots + 11 Copy content Toggle raw display
1111 T8 T^{8} Copy content Toggle raw display
1313 T845T6++6875 T^{8} - 45 T^{6} + \cdots + 6875 Copy content Toggle raw display
1717 T881T6++40931 T^{8} - 81 T^{6} + \cdots + 40931 Copy content Toggle raw display
1919 (T46T34T2++11)2 (T^{4} - 6 T^{3} - 4 T^{2} + \cdots + 11)^{2} Copy content Toggle raw display
2323 T899T6++26411 T^{8} - 99 T^{6} + \cdots + 26411 Copy content Toggle raw display
2929 (T412T3++11)2 (T^{4} - 12 T^{3} + \cdots + 11)^{2} Copy content Toggle raw display
3131 (T47T3+5T2+1)2 (T^{4} - 7 T^{3} + 5 T^{2} + \cdots - 1)^{2} Copy content Toggle raw display
3737 T8101T6++3971 T^{8} - 101 T^{6} + \cdots + 3971 Copy content Toggle raw display
4141 (T417T3+1969)2 (T^{4} - 17 T^{3} + \cdots - 1969)^{2} Copy content Toggle raw display
4343 T8173T6++212531 T^{8} - 173 T^{6} + \cdots + 212531 Copy content Toggle raw display
4747 T8191T6++244211 T^{8} - 191 T^{6} + \cdots + 244211 Copy content Toggle raw display
5353 T8249T6++489731 T^{8} - 249 T^{6} + \cdots + 489731 Copy content Toggle raw display
5959 (T4+3T375T2+1)2 (T^{4} + 3 T^{3} - 75 T^{2} + \cdots - 1)^{2} Copy content Toggle raw display
6161 (T410T3++209)2 (T^{4} - 10 T^{3} + \cdots + 209)^{2} Copy content Toggle raw display
6767 T8149T6++18491 T^{8} - 149 T^{6} + \cdots + 18491 Copy content Toggle raw display
7171 (T4+21T3+2511)2 (T^{4} + 21 T^{3} + \cdots - 2511)^{2} Copy content Toggle raw display
7373 T8297T6++1279091 T^{8} - 297 T^{6} + \cdots + 1279091 Copy content Toggle raw display
7979 (T48T3+319)2 (T^{4} - 8 T^{3} + \cdots - 319)^{2} Copy content Toggle raw display
8383 T8111T6++212531 T^{8} - 111 T^{6} + \cdots + 212531 Copy content Toggle raw display
8989 (T4+6T3++1871)2 (T^{4} + 6 T^{3} + \cdots + 1871)^{2} Copy content Toggle raw display
9797 T8162T6++161051 T^{8} - 162 T^{6} + \cdots + 161051 Copy content Toggle raw display
show more
show less