Properties

Label 12-304e6-1.1-c1e6-0-6
Degree 1212
Conductor 7.893×10147.893\times 10^{14}
Sign 11
Analytic cond. 204.599204.599
Root an. cond. 1.558021.55802
Motivic weight 11
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 66

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9·3-s − 6·5-s − 6·7-s + 36·9-s − 6·11-s − 15·13-s + 54·15-s − 9·17-s − 18·19-s + 54·21-s − 18·23-s + 18·25-s − 80·27-s − 3·29-s + 3·31-s + 54·33-s + 36·35-s − 24·37-s + 135·39-s − 15·41-s + 21·43-s − 216·45-s − 21·47-s + 30·49-s + 81·51-s − 27·53-s + 36·55-s + ⋯
L(s)  = 1  − 5.19·3-s − 2.68·5-s − 2.26·7-s + 12·9-s − 1.80·11-s − 4.16·13-s + 13.9·15-s − 2.18·17-s − 4.12·19-s + 11.7·21-s − 3.75·23-s + 18/5·25-s − 15.3·27-s − 0.557·29-s + 0.538·31-s + 9.40·33-s + 6.08·35-s − 3.94·37-s + 21.6·39-s − 2.34·41-s + 3.20·43-s − 32.1·45-s − 3.06·47-s + 30/7·49-s + 11.3·51-s − 3.70·53-s + 4.85·55-s + ⋯

Functional equation

Λ(s)=((224196)s/2ΓC(s)6L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 19^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}
Λ(s)=((224196)s/2ΓC(s+1/2)6L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 19^{6}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

Invariants

Degree: 1212
Conductor: 2241962^{24} \cdot 19^{6}
Sign: 11
Analytic conductor: 204.599204.599
Root analytic conductor: 1.558021.55802
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 66
Selberg data: (12, 224196, ( :[1/2]6), 1)(12,\ 2^{24} \cdot 19^{6} ,\ ( \ : [1/2]^{6} ),\ 1 )

Particular Values

L(1)L(1) == 00
L(12)L(\frac12) == 00
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
19 1+18T+144T2+737T3+144pT4+18p2T5+p3T6 1 + 18 T + 144 T^{2} + 737 T^{3} + 144 p T^{4} + 18 p^{2} T^{5} + p^{3} T^{6}
good3 1+p2T+5p2T2+161T3+50p2T4+38p3T5+1945T6+38p4T7+50p4T8+161p3T9+5p6T10+p7T11+p6T12 1 + p^{2} T + 5 p^{2} T^{2} + 161 T^{3} + 50 p^{2} T^{4} + 38 p^{3} T^{5} + 1945 T^{6} + 38 p^{4} T^{7} + 50 p^{4} T^{8} + 161 p^{3} T^{9} + 5 p^{6} T^{10} + p^{7} T^{11} + p^{6} T^{12}
5 1+6T+18T2+9pT3+81T4+87T5+109T6+87pT7+81p2T8+9p4T9+18p4T10+6p5T11+p6T12 1 + 6 T + 18 T^{2} + 9 p T^{3} + 81 T^{4} + 87 T^{5} + 109 T^{6} + 87 p T^{7} + 81 p^{2} T^{8} + 9 p^{4} T^{9} + 18 p^{4} T^{10} + 6 p^{5} T^{11} + p^{6} T^{12}
7 1+6T+6T2+6T3+24pT4+384T5+191T6+384pT7+24p3T8+6p3T9+6p4T10+6p5T11+p6T12 1 + 6 T + 6 T^{2} + 6 T^{3} + 24 p T^{4} + 384 T^{5} + 191 T^{6} + 384 p T^{7} + 24 p^{3} T^{8} + 6 p^{3} T^{9} + 6 p^{4} T^{10} + 6 p^{5} T^{11} + p^{6} T^{12}
11 1+6T6T214T3+504T4+768T53409T6+768pT7+504p2T814p3T96p4T10+6p5T11+p6T12 1 + 6 T - 6 T^{2} - 14 T^{3} + 504 T^{4} + 768 T^{5} - 3409 T^{6} + 768 p T^{7} + 504 p^{2} T^{8} - 14 p^{3} T^{9} - 6 p^{4} T^{10} + 6 p^{5} T^{11} + p^{6} T^{12}
13 1+15T+96T2+298T39pT46255T532679T66255pT79p3T8+298p3T9+96p4T10+15p5T11+p6T12 1 + 15 T + 96 T^{2} + 298 T^{3} - 9 p T^{4} - 6255 T^{5} - 32679 T^{6} - 6255 p T^{7} - 9 p^{3} T^{8} + 298 p^{3} T^{9} + 96 p^{4} T^{10} + 15 p^{5} T^{11} + p^{6} T^{12}
17 1+9T+36T2+40T3369T42673T510927T62673pT7369p2T8+40p3T9+36p4T10+9p5T11+p6T12 1 + 9 T + 36 T^{2} + 40 T^{3} - 369 T^{4} - 2673 T^{5} - 10927 T^{6} - 2673 p T^{7} - 369 p^{2} T^{8} + 40 p^{3} T^{9} + 36 p^{4} T^{10} + 9 p^{5} T^{11} + p^{6} T^{12}
23 1+18T+180T2+1354T3+8784T4+49464T5+249209T6+49464pT7+8784p2T8+1354p3T9+180p4T10+18p5T11+p6T12 1 + 18 T + 180 T^{2} + 1354 T^{3} + 8784 T^{4} + 49464 T^{5} + 249209 T^{6} + 49464 p T^{7} + 8784 p^{2} T^{8} + 1354 p^{3} T^{9} + 180 p^{4} T^{10} + 18 p^{5} T^{11} + p^{6} T^{12}
29 1+3T+36T2+378T3+1872T4+9921T5+94159T6+9921pT7+1872p2T8+378p3T9+36p4T10+3p5T11+p6T12 1 + 3 T + 36 T^{2} + 378 T^{3} + 1872 T^{4} + 9921 T^{5} + 94159 T^{6} + 9921 p T^{7} + 1872 p^{2} T^{8} + 378 p^{3} T^{9} + 36 p^{4} T^{10} + 3 p^{5} T^{11} + p^{6} T^{12}
31 13T60T2+59T3+2223T4+774T578969T6+774pT7+2223p2T8+59p3T960p4T103p5T11+p6T12 1 - 3 T - 60 T^{2} + 59 T^{3} + 2223 T^{4} + 774 T^{5} - 78969 T^{6} + 774 p T^{7} + 2223 p^{2} T^{8} + 59 p^{3} T^{9} - 60 p^{4} T^{10} - 3 p^{5} T^{11} + p^{6} T^{12}
37 (1+12T+150T2+907T3+150pT4+12p2T5+p3T6)2 ( 1 + 12 T + 150 T^{2} + 907 T^{3} + 150 p T^{4} + 12 p^{2} T^{5} + p^{3} T^{6} )^{2}
41 1+15T+150T2+1000T3+8025T4+61965T5+472529T6+61965pT7+8025p2T8+1000p3T9+150p4T10+15p5T11+p6T12 1 + 15 T + 150 T^{2} + 1000 T^{3} + 8025 T^{4} + 61965 T^{5} + 472529 T^{6} + 61965 p T^{7} + 8025 p^{2} T^{8} + 1000 p^{3} T^{9} + 150 p^{4} T^{10} + 15 p^{5} T^{11} + p^{6} T^{12}
43 121T+174T2454T33879T4+58707T5460263T6+58707pT73879p2T8454p3T9+174p4T1021p5T11+p6T12 1 - 21 T + 174 T^{2} - 454 T^{3} - 3879 T^{4} + 58707 T^{5} - 460263 T^{6} + 58707 p T^{7} - 3879 p^{2} T^{8} - 454 p^{3} T^{9} + 174 p^{4} T^{10} - 21 p^{5} T^{11} + p^{6} T^{12}
47 1+21T+186T2+908T3+2715T4+657T554025T6+657pT7+2715p2T8+908p3T9+186p4T10+21p5T11+p6T12 1 + 21 T + 186 T^{2} + 908 T^{3} + 2715 T^{4} + 657 T^{5} - 54025 T^{6} + 657 p T^{7} + 2715 p^{2} T^{8} + 908 p^{3} T^{9} + 186 p^{4} T^{10} + 21 p^{5} T^{11} + p^{6} T^{12}
53 1+27T+324T2+2178T3+11259T4+87453T5+753949T6+87453pT7+11259p2T8+2178p3T9+324p4T10+27p5T11+p6T12 1 + 27 T + 324 T^{2} + 2178 T^{3} + 11259 T^{4} + 87453 T^{5} + 753949 T^{6} + 87453 p T^{7} + 11259 p^{2} T^{8} + 2178 p^{3} T^{9} + 324 p^{4} T^{10} + 27 p^{5} T^{11} + p^{6} T^{12}
59 16T+6T2+332T32208T410908T5+340589T610908pT72208p2T8+332p3T9+6p4T106p5T11+p6T12 1 - 6 T + 6 T^{2} + 332 T^{3} - 2208 T^{4} - 10908 T^{5} + 340589 T^{6} - 10908 p T^{7} - 2208 p^{2} T^{8} + 332 p^{3} T^{9} + 6 p^{4} T^{10} - 6 p^{5} T^{11} + p^{6} T^{12}
61 112T24T2+1238T37956T448996T5+978639T648996pT77956p2T8+1238p3T924p4T1012p5T11+p6T12 1 - 12 T - 24 T^{2} + 1238 T^{3} - 7956 T^{4} - 48996 T^{5} + 978639 T^{6} - 48996 p T^{7} - 7956 p^{2} T^{8} + 1238 p^{3} T^{9} - 24 p^{4} T^{10} - 12 p^{5} T^{11} + p^{6} T^{12}
67 1+18T+252T2+1838T3+4968T464692T5990987T664692pT7+4968p2T8+1838p3T9+252p4T10+18p5T11+p6T12 1 + 18 T + 252 T^{2} + 1838 T^{3} + 4968 T^{4} - 64692 T^{5} - 990987 T^{6} - 64692 p T^{7} + 4968 p^{2} T^{8} + 1838 p^{3} T^{9} + 252 p^{4} T^{10} + 18 p^{5} T^{11} + p^{6} T^{12}
71 1+18T+252T2+1814T3+5832T454324T5887815T654324pT7+5832p2T8+1814p3T9+252p4T10+18p5T11+p6T12 1 + 18 T + 252 T^{2} + 1814 T^{3} + 5832 T^{4} - 54324 T^{5} - 887815 T^{6} - 54324 p T^{7} + 5832 p^{2} T^{8} + 1814 p^{3} T^{9} + 252 p^{4} T^{10} + 18 p^{5} T^{11} + p^{6} T^{12}
73 136T+576T25760T3+51984T4544320T5+5272343T6544320pT7+51984p2T85760p3T9+576p4T1036p5T11+p6T12 1 - 36 T + 576 T^{2} - 5760 T^{3} + 51984 T^{4} - 544320 T^{5} + 5272343 T^{6} - 544320 p T^{7} + 51984 p^{2} T^{8} - 5760 p^{3} T^{9} + 576 p^{4} T^{10} - 36 p^{5} T^{11} + p^{6} T^{12}
79 1+27T+180T21964T332490T411547T5+1937037T611547pT732490p2T81964p3T9+180p4T10+27p5T11+p6T12 1 + 27 T + 180 T^{2} - 1964 T^{3} - 32490 T^{4} - 11547 T^{5} + 1937037 T^{6} - 11547 p T^{7} - 32490 p^{2} T^{8} - 1964 p^{3} T^{9} + 180 p^{4} T^{10} + 27 p^{5} T^{11} + p^{6} T^{12}
83 1+12T150T2562T3+37494T4+98250T52840605T6+98250pT7+37494p2T8562p3T9150p4T10+12p5T11+p6T12 1 + 12 T - 150 T^{2} - 562 T^{3} + 37494 T^{4} + 98250 T^{5} - 2840605 T^{6} + 98250 p T^{7} + 37494 p^{2} T^{8} - 562 p^{3} T^{9} - 150 p^{4} T^{10} + 12 p^{5} T^{11} + p^{6} T^{12}
89 1+12T+54T2+1035T3279T469891T5+3961T669891pT7279p2T8+1035p3T9+54p4T10+12p5T11+p6T12 1 + 12 T + 54 T^{2} + 1035 T^{3} - 279 T^{4} - 69891 T^{5} + 3961 T^{6} - 69891 p T^{7} - 279 p^{2} T^{8} + 1035 p^{3} T^{9} + 54 p^{4} T^{10} + 12 p^{5} T^{11} + p^{6} T^{12}
97 1+18T+270T2+4178T3+50940T4+535752T5+5820555T6+535752pT7+50940p2T8+4178p3T9+270p4T10+18p5T11+p6T12 1 + 18 T + 270 T^{2} + 4178 T^{3} + 50940 T^{4} + 535752 T^{5} + 5820555 T^{6} + 535752 p T^{7} + 50940 p^{2} T^{8} + 4178 p^{3} T^{9} + 270 p^{4} T^{10} + 18 p^{5} T^{11} + p^{6} T^{12}
show more
show less
   L(s)=p j=112(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−7.00820039279161874905501137167, −6.49971060897362979511561371440, −6.38134130913356182863179587099, −6.34543112826713143912387064344, −6.28060821305869572482434432607, −6.21765520560200267778015873485, −5.99103586538089416765680574736, −5.54597359423337706076743522041, −5.39594318982216479586036883501, −5.19977406470742622286100624982, −5.19040623208105583996420403525, −5.15433618110883852317273453322, −4.84450292400711764204908889079, −4.43746854256803047399051037185, −4.29341750782648339354552986395, −4.23696712306679260547063002140, −4.20644719544482949991517078395, −3.97297030795175168094658397943, −3.43834989136773901717483753778, −3.25857511079660822708767588263, −2.84908086618182205097568939456, −2.68618014787347857699935654435, −2.24339989875866482874873369859, −2.03519893992654500254372132537, −1.95867123665135618429143645799, 0, 0, 0, 0, 0, 0, 1.95867123665135618429143645799, 2.03519893992654500254372132537, 2.24339989875866482874873369859, 2.68618014787347857699935654435, 2.84908086618182205097568939456, 3.25857511079660822708767588263, 3.43834989136773901717483753778, 3.97297030795175168094658397943, 4.20644719544482949991517078395, 4.23696712306679260547063002140, 4.29341750782648339354552986395, 4.43746854256803047399051037185, 4.84450292400711764204908889079, 5.15433618110883852317273453322, 5.19040623208105583996420403525, 5.19977406470742622286100624982, 5.39594318982216479586036883501, 5.54597359423337706076743522041, 5.99103586538089416765680574736, 6.21765520560200267778015873485, 6.28060821305869572482434432607, 6.34543112826713143912387064344, 6.38134130913356182863179587099, 6.49971060897362979511561371440, 7.00820039279161874905501137167

Graph of the ZZ-function along the critical line

Plot not available for L-functions of degree greater than 10.