Properties

Label 304.2.u.a
Level 304304
Weight 22
Character orbit 304.u
Analytic conductor 2.4272.427
Analytic rank 11
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [304,2,Mod(17,304)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(304, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 0, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("304.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 304=2419 304 = 2^{4} \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 304.u (of order 99, degree 66, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 2.427452221452.42745222145
Analytic rank: 11
Dimension: 66
Coefficient field: Q(ζ18)\Q(\zeta_{18})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6x3+1 x^{6} - x^{3} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 152)
Sato-Tate group: SU(2)[C9]\mathrm{SU}(2)[C_{9}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ18\zeta_{18}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ185ζ183+1)q3+(ζ185ζ184+1)q5+(ζ185ζ184+2)q7+(2ζ184+ζ183+2)q9++(8ζ185+5ζ18)q99+O(q100) q + (\zeta_{18}^{5} - \zeta_{18}^{3} + \cdots - 1) q^{3} + ( - \zeta_{18}^{5} - \zeta_{18}^{4} + \cdots - 1) q^{5} + ( - \zeta_{18}^{5} - \zeta_{18}^{4} + \cdots - 2) q^{7} + ( - 2 \zeta_{18}^{4} + \zeta_{18}^{3} + \cdots - 2) q^{9}+ \cdots + ( - 8 \zeta_{18}^{5} + \cdots - 5 \zeta_{18}) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q9q36q56q79q96q1115q13+15q159q1718q19+24q2118q23+12q273q29+3q31+3q3324q37+36q3915q41++15q99+O(q100) 6 q - 9 q^{3} - 6 q^{5} - 6 q^{7} - 9 q^{9} - 6 q^{11} - 15 q^{13} + 15 q^{15} - 9 q^{17} - 18 q^{19} + 24 q^{21} - 18 q^{23} + 12 q^{27} - 3 q^{29} + 3 q^{31} + 3 q^{33} - 24 q^{37} + 36 q^{39} - 15 q^{41}+ \cdots + 15 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/304Z)×\left(\mathbb{Z}/304\mathbb{Z}\right)^\times.

nn 9797 191191 229229
χ(n)\chi(n) ζ185-\zeta_{18}^{5} 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
17.1
−0.766044 0.642788i
−0.173648 + 0.984808i
−0.766044 + 0.642788i
0.939693 + 0.342020i
0.939693 0.342020i
−0.173648 0.984808i
0 −1.67365 1.40436i 0 −0.826352 + 0.300767i 0 −0.826352 1.43128i 0 0.307934 + 1.74638i 0
81.1 0 −0.560307 + 3.17766i 0 −1.93969 1.62760i 0 −1.93969 3.35965i 0 −6.96451 2.53487i 0
161.1 0 −1.67365 + 1.40436i 0 −0.826352 0.300767i 0 −0.826352 + 1.43128i 0 0.307934 1.74638i 0
177.1 0 −2.26604 0.824773i 0 −0.233956 1.32683i 0 −0.233956 + 0.405223i 0 2.15657 + 1.80958i 0
225.1 0 −2.26604 + 0.824773i 0 −0.233956 + 1.32683i 0 −0.233956 0.405223i 0 2.15657 1.80958i 0
289.1 0 −0.560307 3.17766i 0 −1.93969 + 1.62760i 0 −1.93969 + 3.35965i 0 −6.96451 + 2.53487i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 17.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.e even 9 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 304.2.u.a 6
4.b odd 2 1 152.2.q.b 6
19.e even 9 1 inner 304.2.u.a 6
19.e even 9 1 5776.2.a.bj 3
19.f odd 18 1 5776.2.a.bs 3
76.k even 18 1 2888.2.a.m 3
76.l odd 18 1 152.2.q.b 6
76.l odd 18 1 2888.2.a.s 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
152.2.q.b 6 4.b odd 2 1
152.2.q.b 6 76.l odd 18 1
304.2.u.a 6 1.a even 1 1 trivial
304.2.u.a 6 19.e even 9 1 inner
2888.2.a.m 3 76.k even 18 1
2888.2.a.s 3 76.l odd 18 1
5776.2.a.bj 3 19.e even 9 1
5776.2.a.bs 3 19.f odd 18 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T36+9T35+45T34+152T33+342T32+459T3+289 T_{3}^{6} + 9T_{3}^{5} + 45T_{3}^{4} + 152T_{3}^{3} + 342T_{3}^{2} + 459T_{3} + 289 acting on S2new(304,[χ])S_{2}^{\mathrm{new}}(304, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6 T^{6} Copy content Toggle raw display
33 T6+9T5++289 T^{6} + 9 T^{5} + \cdots + 289 Copy content Toggle raw display
55 T6+6T5++9 T^{6} + 6 T^{5} + \cdots + 9 Copy content Toggle raw display
77 T6+6T5++9 T^{6} + 6 T^{5} + \cdots + 9 Copy content Toggle raw display
1111 T6+6T5++1 T^{6} + 6 T^{5} + \cdots + 1 Copy content Toggle raw display
1313 T6+15T5++289 T^{6} + 15 T^{5} + \cdots + 289 Copy content Toggle raw display
1717 T6+9T5++361 T^{6} + 9 T^{5} + \cdots + 361 Copy content Toggle raw display
1919 T6+18T5++6859 T^{6} + 18 T^{5} + \cdots + 6859 Copy content Toggle raw display
2323 T6+18T5++18496 T^{6} + 18 T^{5} + \cdots + 18496 Copy content Toggle raw display
2929 T6+3T5++12321 T^{6} + 3 T^{5} + \cdots + 12321 Copy content Toggle raw display
3131 T63T5++2809 T^{6} - 3 T^{5} + \cdots + 2809 Copy content Toggle raw display
3737 (T3+12T2++19)2 (T^{3} + 12 T^{2} + \cdots + 19)^{2} Copy content Toggle raw display
4141 T6+15T5++15625 T^{6} + 15 T^{5} + \cdots + 15625 Copy content Toggle raw display
4343 T621T5++7921 T^{6} - 21 T^{5} + \cdots + 7921 Copy content Toggle raw display
4747 T6+21T5++7921 T^{6} + 21 T^{5} + \cdots + 7921 Copy content Toggle raw display
5353 T6+27T5++263169 T^{6} + 27 T^{5} + \cdots + 263169 Copy content Toggle raw display
5959 T66T5++271441 T^{6} - 6 T^{5} + \cdots + 271441 Copy content Toggle raw display
6161 T612T5++32041 T^{6} - 12 T^{5} + \cdots + 32041 Copy content Toggle raw display
6767 T6+18T5++3474496 T^{6} + 18 T^{5} + \cdots + 3474496 Copy content Toggle raw display
7171 T6+18T5++3474496 T^{6} + 18 T^{5} + \cdots + 3474496 Copy content Toggle raw display
7373 T636T5++331776 T^{6} - 36 T^{5} + \cdots + 331776 Copy content Toggle raw display
7979 T6+27T5++5329 T^{6} + 27 T^{5} + \cdots + 5329 Copy content Toggle raw display
8383 T6+12T5++2809 T^{6} + 12 T^{5} + \cdots + 2809 Copy content Toggle raw display
8989 T6+12T5++3249 T^{6} + 12 T^{5} + \cdots + 3249 Copy content Toggle raw display
9797 T6+18T5++361 T^{6} + 18 T^{5} + \cdots + 361 Copy content Toggle raw display
show more
show less