Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [304,2,Mod(17,304)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(304, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([0, 0, 10]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("304.17");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 304.u (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 152) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a primitive root of unity . We also show the integral -expansion of the trace form.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
17.1 |
|
0 | −1.67365 | − | 1.40436i | 0 | −0.826352 | + | 0.300767i | 0 | −0.826352 | − | 1.43128i | 0 | 0.307934 | + | 1.74638i | 0 | ||||||||||||||||||||||||||||
81.1 | 0 | −0.560307 | + | 3.17766i | 0 | −1.93969 | − | 1.62760i | 0 | −1.93969 | − | 3.35965i | 0 | −6.96451 | − | 2.53487i | 0 | |||||||||||||||||||||||||||||
161.1 | 0 | −1.67365 | + | 1.40436i | 0 | −0.826352 | − | 0.300767i | 0 | −0.826352 | + | 1.43128i | 0 | 0.307934 | − | 1.74638i | 0 | |||||||||||||||||||||||||||||
177.1 | 0 | −2.26604 | − | 0.824773i | 0 | −0.233956 | − | 1.32683i | 0 | −0.233956 | + | 0.405223i | 0 | 2.15657 | + | 1.80958i | 0 | |||||||||||||||||||||||||||||
225.1 | 0 | −2.26604 | + | 0.824773i | 0 | −0.233956 | + | 1.32683i | 0 | −0.233956 | − | 0.405223i | 0 | 2.15657 | − | 1.80958i | 0 | |||||||||||||||||||||||||||||
289.1 | 0 | −0.560307 | − | 3.17766i | 0 | −1.93969 | + | 1.62760i | 0 | −1.93969 | + | 3.35965i | 0 | −6.96451 | + | 2.53487i | 0 | |||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
19.e | even | 9 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 304.2.u.a | 6 | |
4.b | odd | 2 | 1 | 152.2.q.b | ✓ | 6 | |
19.e | even | 9 | 1 | inner | 304.2.u.a | 6 | |
19.e | even | 9 | 1 | 5776.2.a.bj | 3 | ||
19.f | odd | 18 | 1 | 5776.2.a.bs | 3 | ||
76.k | even | 18 | 1 | 2888.2.a.m | 3 | ||
76.l | odd | 18 | 1 | 152.2.q.b | ✓ | 6 | |
76.l | odd | 18 | 1 | 2888.2.a.s | 3 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
152.2.q.b | ✓ | 6 | 4.b | odd | 2 | 1 | |
152.2.q.b | ✓ | 6 | 76.l | odd | 18 | 1 | |
304.2.u.a | 6 | 1.a | even | 1 | 1 | trivial | |
304.2.u.a | 6 | 19.e | even | 9 | 1 | inner | |
2888.2.a.m | 3 | 76.k | even | 18 | 1 | ||
2888.2.a.s | 3 | 76.l | odd | 18 | 1 | ||
5776.2.a.bj | 3 | 19.e | even | 9 | 1 | ||
5776.2.a.bs | 3 | 19.f | odd | 18 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .