Properties

Label 304.2.u.a
Level $304$
Weight $2$
Character orbit 304.u
Analytic conductor $2.427$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [304,2,Mod(17,304)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(304, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 0, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("304.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 304 = 2^{4} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 304.u (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.42745222145\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 152)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{18}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{18}^{5} - \zeta_{18}^{3} + \cdots - 1) q^{3}+ \cdots + ( - 2 \zeta_{18}^{4} + \zeta_{18}^{3} + \cdots - 2) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\zeta_{18}^{5} - \zeta_{18}^{3} + \cdots - 1) q^{3}+ \cdots + ( - 8 \zeta_{18}^{5} + \cdots - 5 \zeta_{18}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 9 q^{3} - 6 q^{5} - 6 q^{7} - 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 9 q^{3} - 6 q^{5} - 6 q^{7} - 9 q^{9} - 6 q^{11} - 15 q^{13} + 15 q^{15} - 9 q^{17} - 18 q^{19} + 24 q^{21} - 18 q^{23} + 12 q^{27} - 3 q^{29} + 3 q^{31} + 3 q^{33} - 24 q^{37} + 36 q^{39} - 15 q^{41} + 21 q^{43} + 21 q^{45} - 21 q^{47} + 3 q^{49} + 27 q^{51} - 27 q^{53} + 12 q^{55} + 36 q^{57} + 6 q^{59} + 12 q^{61} + 12 q^{63} + 12 q^{65} - 18 q^{67} + 12 q^{69} - 18 q^{71} + 36 q^{73} - 6 q^{75} + 30 q^{77} - 27 q^{79} + 54 q^{81} - 12 q^{83} + 12 q^{85} - 15 q^{87} - 12 q^{89} + 21 q^{91} + 9 q^{93} + 15 q^{95} - 18 q^{97} + 15 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/304\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(191\) \(229\)
\(\chi(n)\) \(-\zeta_{18}^{5}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
17.1
−0.766044 0.642788i
−0.173648 + 0.984808i
−0.766044 + 0.642788i
0.939693 + 0.342020i
0.939693 0.342020i
−0.173648 0.984808i
0 −1.67365 1.40436i 0 −0.826352 + 0.300767i 0 −0.826352 1.43128i 0 0.307934 + 1.74638i 0
81.1 0 −0.560307 + 3.17766i 0 −1.93969 1.62760i 0 −1.93969 3.35965i 0 −6.96451 2.53487i 0
161.1 0 −1.67365 + 1.40436i 0 −0.826352 0.300767i 0 −0.826352 + 1.43128i 0 0.307934 1.74638i 0
177.1 0 −2.26604 0.824773i 0 −0.233956 1.32683i 0 −0.233956 + 0.405223i 0 2.15657 + 1.80958i 0
225.1 0 −2.26604 + 0.824773i 0 −0.233956 + 1.32683i 0 −0.233956 0.405223i 0 2.15657 1.80958i 0
289.1 0 −0.560307 3.17766i 0 −1.93969 + 1.62760i 0 −1.93969 + 3.35965i 0 −6.96451 + 2.53487i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 17.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.e even 9 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 304.2.u.a 6
4.b odd 2 1 152.2.q.b 6
19.e even 9 1 inner 304.2.u.a 6
19.e even 9 1 5776.2.a.bj 3
19.f odd 18 1 5776.2.a.bs 3
76.k even 18 1 2888.2.a.m 3
76.l odd 18 1 152.2.q.b 6
76.l odd 18 1 2888.2.a.s 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
152.2.q.b 6 4.b odd 2 1
152.2.q.b 6 76.l odd 18 1
304.2.u.a 6 1.a even 1 1 trivial
304.2.u.a 6 19.e even 9 1 inner
2888.2.a.m 3 76.k even 18 1
2888.2.a.s 3 76.l odd 18 1
5776.2.a.bj 3 19.e even 9 1
5776.2.a.bs 3 19.f odd 18 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{6} + 9T_{3}^{5} + 45T_{3}^{4} + 152T_{3}^{3} + 342T_{3}^{2} + 459T_{3} + 289 \) acting on \(S_{2}^{\mathrm{new}}(304, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + 9 T^{5} + \cdots + 289 \) Copy content Toggle raw display
$5$ \( T^{6} + 6 T^{5} + \cdots + 9 \) Copy content Toggle raw display
$7$ \( T^{6} + 6 T^{5} + \cdots + 9 \) Copy content Toggle raw display
$11$ \( T^{6} + 6 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$13$ \( T^{6} + 15 T^{5} + \cdots + 289 \) Copy content Toggle raw display
$17$ \( T^{6} + 9 T^{5} + \cdots + 361 \) Copy content Toggle raw display
$19$ \( T^{6} + 18 T^{5} + \cdots + 6859 \) Copy content Toggle raw display
$23$ \( T^{6} + 18 T^{5} + \cdots + 18496 \) Copy content Toggle raw display
$29$ \( T^{6} + 3 T^{5} + \cdots + 12321 \) Copy content Toggle raw display
$31$ \( T^{6} - 3 T^{5} + \cdots + 2809 \) Copy content Toggle raw display
$37$ \( (T^{3} + 12 T^{2} + \cdots + 19)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} + 15 T^{5} + \cdots + 15625 \) Copy content Toggle raw display
$43$ \( T^{6} - 21 T^{5} + \cdots + 7921 \) Copy content Toggle raw display
$47$ \( T^{6} + 21 T^{5} + \cdots + 7921 \) Copy content Toggle raw display
$53$ \( T^{6} + 27 T^{5} + \cdots + 263169 \) Copy content Toggle raw display
$59$ \( T^{6} - 6 T^{5} + \cdots + 271441 \) Copy content Toggle raw display
$61$ \( T^{6} - 12 T^{5} + \cdots + 32041 \) Copy content Toggle raw display
$67$ \( T^{6} + 18 T^{5} + \cdots + 3474496 \) Copy content Toggle raw display
$71$ \( T^{6} + 18 T^{5} + \cdots + 3474496 \) Copy content Toggle raw display
$73$ \( T^{6} - 36 T^{5} + \cdots + 331776 \) Copy content Toggle raw display
$79$ \( T^{6} + 27 T^{5} + \cdots + 5329 \) Copy content Toggle raw display
$83$ \( T^{6} + 12 T^{5} + \cdots + 2809 \) Copy content Toggle raw display
$89$ \( T^{6} + 12 T^{5} + \cdots + 3249 \) Copy content Toggle raw display
$97$ \( T^{6} + 18 T^{5} + \cdots + 361 \) Copy content Toggle raw display
show more
show less