L(s) = 1 | + (0.471 + 0.881i)2-s + (−0.536 + 0.222i)3-s + (−0.555 + 0.831i)4-s + (−0.382 + 0.923i)5-s + (−0.448 − 0.368i)6-s + (−0.995 − 0.0980i)8-s + (−0.468 + 0.468i)9-s + (−0.995 + 0.0980i)10-s + (1.81 + 0.750i)11-s + (0.113 − 0.569i)12-s + (0.591 + 1.42i)13-s − 0.580i·15-s + (−0.382 − 0.923i)16-s + (−0.634 − 0.192i)18-s + (0.382 + 0.923i)19-s + (−0.555 − 0.831i)20-s + ⋯ |
L(s) = 1 | + (0.471 + 0.881i)2-s + (−0.536 + 0.222i)3-s + (−0.555 + 0.831i)4-s + (−0.382 + 0.923i)5-s + (−0.448 − 0.368i)6-s + (−0.995 − 0.0980i)8-s + (−0.468 + 0.468i)9-s + (−0.995 + 0.0980i)10-s + (1.81 + 0.750i)11-s + (0.113 − 0.569i)12-s + (0.591 + 1.42i)13-s − 0.580i·15-s + (−0.382 − 0.923i)16-s + (−0.634 − 0.192i)18-s + (0.382 + 0.923i)19-s + (−0.555 − 0.831i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.956 + 0.290i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.956 + 0.290i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.131511972\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.131511972\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.471 - 0.881i)T \) |
| 5 | \( 1 + (0.382 - 0.923i)T \) |
| 19 | \( 1 + (-0.382 - 0.923i)T \) |
good | 3 | \( 1 + (0.536 - 0.222i)T + (0.707 - 0.707i)T^{2} \) |
| 7 | \( 1 - iT^{2} \) |
| 11 | \( 1 + (-1.81 - 0.750i)T + (0.707 + 0.707i)T^{2} \) |
| 13 | \( 1 + (-0.591 - 1.42i)T + (-0.707 + 0.707i)T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 23 | \( 1 + iT^{2} \) |
| 29 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + (-0.674 + 1.62i)T + (-0.707 - 0.707i)T^{2} \) |
| 41 | \( 1 + iT^{2} \) |
| 43 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + (1.76 + 0.732i)T + (0.707 + 0.707i)T^{2} \) |
| 59 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 61 | \( 1 + (0.360 - 0.149i)T + (0.707 - 0.707i)T^{2} \) |
| 67 | \( 1 + (0.181 - 0.0750i)T + (0.707 - 0.707i)T^{2} \) |
| 71 | \( 1 - iT^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 89 | \( 1 - iT^{2} \) |
| 97 | \( 1 + 1.26T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.266247214721606424274278011987, −8.424042360580877809345696405946, −7.55220497763297888215987764063, −6.90705156477841191964613050333, −6.27218789650653308565894848158, −5.79469626047336333373769777045, −4.48198817898417787544505424680, −4.13029898749270115987058702410, −3.26115164921092015052701762967, −1.88576112041199998146531585560,
0.74025334897137071275010847702, 1.32532505189147106411326753185, 3.07588300972470452744340532686, 3.59033774176315105235661203267, 4.56225085477445754843379378836, 5.33877021886169900103624505017, 6.07138773136718411965360601303, 6.59429381753107160082584367005, 7.976238573384390096896895022004, 8.766450460323700511248448641118