L(s) = 1 | + 2-s + 4-s − 1.73·5-s + 1.26·7-s + 8-s − 1.73·10-s − 1.26·11-s + 1.26·14-s + 16-s − 5.19·17-s + 4.73·19-s − 1.73·20-s − 1.26·22-s + 8.19·23-s − 2.00·25-s + 1.26·28-s + 3·29-s + 9.46·31-s + 32-s − 5.19·34-s − 2.19·35-s + 3·37-s + 4.73·38-s − 1.73·40-s − 6.46·41-s − 4.19·43-s − 1.26·44-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.5·4-s − 0.774·5-s + 0.479·7-s + 0.353·8-s − 0.547·10-s − 0.382·11-s + 0.338·14-s + 0.250·16-s − 1.26·17-s + 1.08·19-s − 0.387·20-s − 0.270·22-s + 1.70·23-s − 0.400·25-s + 0.239·28-s + 0.557·29-s + 1.69·31-s + 0.176·32-s − 0.891·34-s − 0.371·35-s + 0.493·37-s + 0.767·38-s − 0.273·40-s − 1.00·41-s − 0.639·43-s − 0.191·44-s + ⋯ |
Λ(s)=(=(3042s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(3042s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.659821151 |
L(21) |
≈ |
2.659821151 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1 |
| 13 | 1 |
good | 5 | 1+1.73T+5T2 |
| 7 | 1−1.26T+7T2 |
| 11 | 1+1.26T+11T2 |
| 17 | 1+5.19T+17T2 |
| 19 | 1−4.73T+19T2 |
| 23 | 1−8.19T+23T2 |
| 29 | 1−3T+29T2 |
| 31 | 1−9.46T+31T2 |
| 37 | 1−3T+37T2 |
| 41 | 1+6.46T+41T2 |
| 43 | 1+4.19T+43T2 |
| 47 | 1−4.73T+47T2 |
| 53 | 1+3T+53T2 |
| 59 | 1−13.8T+59T2 |
| 61 | 1−15.1T+61T2 |
| 67 | 1−7.26T+67T2 |
| 71 | 1−2.19T+71T2 |
| 73 | 1−12.1T+73T2 |
| 79 | 1−8.39T+79T2 |
| 83 | 1+5.66T+83T2 |
| 89 | 1+9.46T+89T2 |
| 97 | 1−6T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.394954276680925924230407291964, −8.054524933309666890774180561198, −6.99733113537378081800058731230, −6.64322499263362940144347190670, −5.36069361030688311095974606106, −4.87090390824712768481786189131, −4.08189789689010512488697510855, −3.17280689697497580960092811354, −2.31979612613075247521586249959, −0.909448153655508590737341082519,
0.909448153655508590737341082519, 2.31979612613075247521586249959, 3.17280689697497580960092811354, 4.08189789689010512488697510855, 4.87090390824712768481786189131, 5.36069361030688311095974606106, 6.64322499263362940144347190670, 6.99733113537378081800058731230, 8.054524933309666890774180561198, 8.394954276680925924230407291964