Properties

Label 2-3042-1.1-c1-0-15
Degree $2$
Conductor $3042$
Sign $1$
Analytic cond. $24.2904$
Root an. cond. $4.92853$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 1.73·5-s + 1.26·7-s + 8-s − 1.73·10-s − 1.26·11-s + 1.26·14-s + 16-s − 5.19·17-s + 4.73·19-s − 1.73·20-s − 1.26·22-s + 8.19·23-s − 2.00·25-s + 1.26·28-s + 3·29-s + 9.46·31-s + 32-s − 5.19·34-s − 2.19·35-s + 3·37-s + 4.73·38-s − 1.73·40-s − 6.46·41-s − 4.19·43-s − 1.26·44-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s − 0.774·5-s + 0.479·7-s + 0.353·8-s − 0.547·10-s − 0.382·11-s + 0.338·14-s + 0.250·16-s − 1.26·17-s + 1.08·19-s − 0.387·20-s − 0.270·22-s + 1.70·23-s − 0.400·25-s + 0.239·28-s + 0.557·29-s + 1.69·31-s + 0.176·32-s − 0.891·34-s − 0.371·35-s + 0.493·37-s + 0.767·38-s − 0.273·40-s − 1.00·41-s − 0.639·43-s − 0.191·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3042 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3042 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3042\)    =    \(2 \cdot 3^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(24.2904\)
Root analytic conductor: \(4.92853\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3042,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.659821151\)
\(L(\frac12)\) \(\approx\) \(2.659821151\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
13 \( 1 \)
good5 \( 1 + 1.73T + 5T^{2} \)
7 \( 1 - 1.26T + 7T^{2} \)
11 \( 1 + 1.26T + 11T^{2} \)
17 \( 1 + 5.19T + 17T^{2} \)
19 \( 1 - 4.73T + 19T^{2} \)
23 \( 1 - 8.19T + 23T^{2} \)
29 \( 1 - 3T + 29T^{2} \)
31 \( 1 - 9.46T + 31T^{2} \)
37 \( 1 - 3T + 37T^{2} \)
41 \( 1 + 6.46T + 41T^{2} \)
43 \( 1 + 4.19T + 43T^{2} \)
47 \( 1 - 4.73T + 47T^{2} \)
53 \( 1 + 3T + 53T^{2} \)
59 \( 1 - 13.8T + 59T^{2} \)
61 \( 1 - 15.1T + 61T^{2} \)
67 \( 1 - 7.26T + 67T^{2} \)
71 \( 1 - 2.19T + 71T^{2} \)
73 \( 1 - 12.1T + 73T^{2} \)
79 \( 1 - 8.39T + 79T^{2} \)
83 \( 1 + 5.66T + 83T^{2} \)
89 \( 1 + 9.46T + 89T^{2} \)
97 \( 1 - 6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.394954276680925924230407291964, −8.054524933309666890774180561198, −6.99733113537378081800058731230, −6.64322499263362940144347190670, −5.36069361030688311095974606106, −4.87090390824712768481786189131, −4.08189789689010512488697510855, −3.17280689697497580960092811354, −2.31979612613075247521586249959, −0.909448153655508590737341082519, 0.909448153655508590737341082519, 2.31979612613075247521586249959, 3.17280689697497580960092811354, 4.08189789689010512488697510855, 4.87090390824712768481786189131, 5.36069361030688311095974606106, 6.64322499263362940144347190670, 6.99733113537378081800058731230, 8.054524933309666890774180561198, 8.394954276680925924230407291964

Graph of the $Z$-function along the critical line