Properties

Label 3042.2.a.v
Level $3042$
Weight $2$
Character orbit 3042.a
Self dual yes
Analytic conductor $24.290$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3042,2,Mod(1,3042)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3042, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3042.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3042 = 2 \cdot 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3042.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.2904922949\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 78)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + q^{4} + \beta q^{5} + (\beta + 3) q^{7} + q^{8} + \beta q^{10} + ( - \beta - 3) q^{11} + (\beta + 3) q^{14} + q^{16} + 3 \beta q^{17} + ( - \beta + 3) q^{19} + \beta q^{20} + ( - \beta - 3) q^{22}+ \cdots + (6 \beta + 5) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} + 6 q^{7} + 2 q^{8} - 6 q^{11} + 6 q^{14} + 2 q^{16} + 6 q^{19} - 6 q^{22} + 6 q^{23} - 4 q^{25} + 6 q^{28} + 6 q^{29} + 12 q^{31} + 2 q^{32} + 6 q^{35} + 6 q^{37} + 6 q^{38} - 6 q^{41}+ \cdots + 10 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
1.00000 0 1.00000 −1.73205 0 1.26795 1.00000 0 −1.73205
1.2 1.00000 0 1.00000 1.73205 0 4.73205 1.00000 0 1.73205
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3042.2.a.v 2
3.b odd 2 1 1014.2.a.h 2
12.b even 2 1 8112.2.a.bq 2
13.b even 2 1 3042.2.a.s 2
13.d odd 4 2 3042.2.b.l 4
13.f odd 12 2 234.2.l.a 4
39.d odd 2 1 1014.2.a.j 2
39.f even 4 2 1014.2.b.d 4
39.h odd 6 2 1014.2.e.h 4
39.i odd 6 2 1014.2.e.j 4
39.k even 12 2 78.2.i.b 4
39.k even 12 2 1014.2.i.f 4
52.l even 12 2 1872.2.by.k 4
156.h even 2 1 8112.2.a.bx 2
156.v odd 12 2 624.2.bv.d 4
195.bc odd 12 2 1950.2.y.a 4
195.bh even 12 2 1950.2.bc.c 4
195.bn odd 12 2 1950.2.y.h 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
78.2.i.b 4 39.k even 12 2
234.2.l.a 4 13.f odd 12 2
624.2.bv.d 4 156.v odd 12 2
1014.2.a.h 2 3.b odd 2 1
1014.2.a.j 2 39.d odd 2 1
1014.2.b.d 4 39.f even 4 2
1014.2.e.h 4 39.h odd 6 2
1014.2.e.j 4 39.i odd 6 2
1014.2.i.f 4 39.k even 12 2
1872.2.by.k 4 52.l even 12 2
1950.2.y.a 4 195.bc odd 12 2
1950.2.y.h 4 195.bn odd 12 2
1950.2.bc.c 4 195.bh even 12 2
3042.2.a.s 2 13.b even 2 1
3042.2.a.v 2 1.a even 1 1 trivial
3042.2.b.l 4 13.d odd 4 2
8112.2.a.bq 2 12.b even 2 1
8112.2.a.bx 2 156.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3042))\):

\( T_{5}^{2} - 3 \) Copy content Toggle raw display
\( T_{7}^{2} - 6T_{7} + 6 \) Copy content Toggle raw display
\( T_{11}^{2} + 6T_{11} + 6 \) Copy content Toggle raw display
\( T_{17}^{2} - 27 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 3 \) Copy content Toggle raw display
$7$ \( T^{2} - 6T + 6 \) Copy content Toggle raw display
$11$ \( T^{2} + 6T + 6 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 27 \) Copy content Toggle raw display
$19$ \( T^{2} - 6T + 6 \) Copy content Toggle raw display
$23$ \( T^{2} - 6T - 18 \) Copy content Toggle raw display
$29$ \( (T - 3)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 12T + 24 \) Copy content Toggle raw display
$37$ \( (T - 3)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 6T - 3 \) Copy content Toggle raw display
$43$ \( T^{2} - 2T - 26 \) Copy content Toggle raw display
$47$ \( T^{2} - 6T + 6 \) Copy content Toggle raw display
$53$ \( (T + 3)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 192 \) Copy content Toggle raw display
$61$ \( T^{2} - 20T + 73 \) Copy content Toggle raw display
$67$ \( T^{2} - 18T + 78 \) Copy content Toggle raw display
$71$ \( T^{2} + 6T - 18 \) Copy content Toggle raw display
$73$ \( T^{2} - 147 \) Copy content Toggle raw display
$79$ \( T^{2} + 4T - 104 \) Copy content Toggle raw display
$83$ \( T^{2} - 6T - 66 \) Copy content Toggle raw display
$89$ \( T^{2} + 12T + 24 \) Copy content Toggle raw display
$97$ \( (T - 6)^{2} \) Copy content Toggle raw display
show more
show less