Properties

Label 2-3042-1.1-c1-0-31
Degree $2$
Conductor $3042$
Sign $1$
Analytic cond. $24.2904$
Root an. cond. $4.92853$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 1.73·5-s + 4.73·7-s + 8-s + 1.73·10-s − 4.73·11-s + 4.73·14-s + 16-s + 5.19·17-s + 1.26·19-s + 1.73·20-s − 4.73·22-s − 2.19·23-s − 2.00·25-s + 4.73·28-s + 3·29-s + 2.53·31-s + 32-s + 5.19·34-s + 8.19·35-s + 3·37-s + 1.26·38-s + 1.73·40-s + 0.464·41-s + 6.19·43-s − 4.73·44-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s + 0.774·5-s + 1.78·7-s + 0.353·8-s + 0.547·10-s − 1.42·11-s + 1.26·14-s + 0.250·16-s + 1.26·17-s + 0.290·19-s + 0.387·20-s − 1.00·22-s − 0.457·23-s − 0.400·25-s + 0.894·28-s + 0.557·29-s + 0.455·31-s + 0.176·32-s + 0.891·34-s + 1.38·35-s + 0.493·37-s + 0.205·38-s + 0.273·40-s + 0.0724·41-s + 0.944·43-s − 0.713·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3042 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3042 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3042\)    =    \(2 \cdot 3^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(24.2904\)
Root analytic conductor: \(4.92853\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3042,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.134206033\)
\(L(\frac12)\) \(\approx\) \(4.134206033\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
13 \( 1 \)
good5 \( 1 - 1.73T + 5T^{2} \)
7 \( 1 - 4.73T + 7T^{2} \)
11 \( 1 + 4.73T + 11T^{2} \)
17 \( 1 - 5.19T + 17T^{2} \)
19 \( 1 - 1.26T + 19T^{2} \)
23 \( 1 + 2.19T + 23T^{2} \)
29 \( 1 - 3T + 29T^{2} \)
31 \( 1 - 2.53T + 31T^{2} \)
37 \( 1 - 3T + 37T^{2} \)
41 \( 1 - 0.464T + 41T^{2} \)
43 \( 1 - 6.19T + 43T^{2} \)
47 \( 1 - 1.26T + 47T^{2} \)
53 \( 1 + 3T + 53T^{2} \)
59 \( 1 + 13.8T + 59T^{2} \)
61 \( 1 - 4.80T + 61T^{2} \)
67 \( 1 - 10.7T + 67T^{2} \)
71 \( 1 + 8.19T + 71T^{2} \)
73 \( 1 + 12.1T + 73T^{2} \)
79 \( 1 + 12.3T + 79T^{2} \)
83 \( 1 - 11.6T + 83T^{2} \)
89 \( 1 + 2.53T + 89T^{2} \)
97 \( 1 - 6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.457923756837291590198052217271, −7.81167041435696055564893916175, −7.44923674779790931281839528546, −6.09263770622711338473562121105, −5.52464120770402188106532231200, −4.97915391130726567710947077228, −4.23707681257375981602545169463, −2.95166451406264835295467339684, −2.16298875804859904915391716491, −1.24825277263668092873573165802, 1.24825277263668092873573165802, 2.16298875804859904915391716491, 2.95166451406264835295467339684, 4.23707681257375981602545169463, 4.97915391130726567710947077228, 5.52464120770402188106532231200, 6.09263770622711338473562121105, 7.44923674779790931281839528546, 7.81167041435696055564893916175, 8.457923756837291590198052217271

Graph of the $Z$-function along the critical line