Properties

Label 3042.2.b.l
Level 30423042
Weight 22
Character orbit 3042.b
Analytic conductor 24.29024.290
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3042,2,Mod(1351,3042)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3042, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3042.1351");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3042=232132 3042 = 2 \cdot 3^{2} \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3042.b (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 24.290492294924.2904922949
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 22 2^{2}
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2q4β2q5+(β23β1)q7β1q8+β3q10+(β2+3β1)q11+(β3+3)q14+q16+3β3q17++(6β25β1)q98+O(q100) q + \beta_1 q^{2} - q^{4} - \beta_{2} q^{5} + (\beta_{2} - 3 \beta_1) q^{7} - \beta_1 q^{8} + \beta_{3} q^{10} + ( - \beta_{2} + 3 \beta_1) q^{11} + ( - \beta_{3} + 3) q^{14} + q^{16} + 3 \beta_{3} q^{17}+ \cdots + (6 \beta_{2} - 5 \beta_1) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q4+12q14+4q1612q2212q23+8q25+12q29+12q3512q384q4320q4912q5312q5512q56+40q6124q624q64++12q95+O(q100) 4 q - 4 q^{4} + 12 q^{14} + 4 q^{16} - 12 q^{22} - 12 q^{23} + 8 q^{25} + 12 q^{29} + 12 q^{35} - 12 q^{38} - 4 q^{43} - 20 q^{49} - 12 q^{53} - 12 q^{55} - 12 q^{56} + 40 q^{61} - 24 q^{62} - 4 q^{64}+ \cdots + 12 q^{95}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== ζ123 \zeta_{12}^{3} Copy content Toggle raw display
β2\beta_{2}== 2ζ1221 2\zeta_{12}^{2} - 1 Copy content Toggle raw display
β3\beta_{3}== ζ123+2ζ12 -\zeta_{12}^{3} + 2\zeta_{12} Copy content Toggle raw display
ζ12\zeta_{12}== (β3+β1)/2 ( \beta_{3} + \beta_1 ) / 2 Copy content Toggle raw display
ζ122\zeta_{12}^{2}== (β2+1)/2 ( \beta_{2} + 1 ) / 2 Copy content Toggle raw display
ζ123\zeta_{12}^{3}== β1 \beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3042Z)×\left(\mathbb{Z}/3042\mathbb{Z}\right)^\times.

nn 677677 847847
χ(n)\chi(n) 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1351.1
−0.866025 0.500000i
0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i
1.00000i 0 −1.00000 1.73205i 0 4.73205i 1.00000i 0 −1.73205
1351.2 1.00000i 0 −1.00000 1.73205i 0 1.26795i 1.00000i 0 1.73205
1351.3 1.00000i 0 −1.00000 1.73205i 0 1.26795i 1.00000i 0 1.73205
1351.4 1.00000i 0 −1.00000 1.73205i 0 4.73205i 1.00000i 0 −1.73205
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3042.2.b.l 4
3.b odd 2 1 1014.2.b.d 4
13.b even 2 1 inner 3042.2.b.l 4
13.c even 3 1 234.2.l.a 4
13.d odd 4 1 3042.2.a.s 2
13.d odd 4 1 3042.2.a.v 2
13.e even 6 1 234.2.l.a 4
39.d odd 2 1 1014.2.b.d 4
39.f even 4 1 1014.2.a.h 2
39.f even 4 1 1014.2.a.j 2
39.h odd 6 1 78.2.i.b 4
39.h odd 6 1 1014.2.i.f 4
39.i odd 6 1 78.2.i.b 4
39.i odd 6 1 1014.2.i.f 4
39.k even 12 2 1014.2.e.h 4
39.k even 12 2 1014.2.e.j 4
52.i odd 6 1 1872.2.by.k 4
52.j odd 6 1 1872.2.by.k 4
156.l odd 4 1 8112.2.a.bq 2
156.l odd 4 1 8112.2.a.bx 2
156.p even 6 1 624.2.bv.d 4
156.r even 6 1 624.2.bv.d 4
195.x odd 6 1 1950.2.bc.c 4
195.y odd 6 1 1950.2.bc.c 4
195.bf even 12 1 1950.2.y.a 4
195.bf even 12 1 1950.2.y.h 4
195.bl even 12 1 1950.2.y.a 4
195.bl even 12 1 1950.2.y.h 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
78.2.i.b 4 39.h odd 6 1
78.2.i.b 4 39.i odd 6 1
234.2.l.a 4 13.c even 3 1
234.2.l.a 4 13.e even 6 1
624.2.bv.d 4 156.p even 6 1
624.2.bv.d 4 156.r even 6 1
1014.2.a.h 2 39.f even 4 1
1014.2.a.j 2 39.f even 4 1
1014.2.b.d 4 3.b odd 2 1
1014.2.b.d 4 39.d odd 2 1
1014.2.e.h 4 39.k even 12 2
1014.2.e.j 4 39.k even 12 2
1014.2.i.f 4 39.h odd 6 1
1014.2.i.f 4 39.i odd 6 1
1872.2.by.k 4 52.i odd 6 1
1872.2.by.k 4 52.j odd 6 1
1950.2.y.a 4 195.bf even 12 1
1950.2.y.a 4 195.bl even 12 1
1950.2.y.h 4 195.bf even 12 1
1950.2.y.h 4 195.bl even 12 1
1950.2.bc.c 4 195.x odd 6 1
1950.2.bc.c 4 195.y odd 6 1
3042.2.a.s 2 13.d odd 4 1
3042.2.a.v 2 13.d odd 4 1
3042.2.b.l 4 1.a even 1 1 trivial
3042.2.b.l 4 13.b even 2 1 inner
8112.2.a.bq 2 156.l odd 4 1
8112.2.a.bx 2 156.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(3042,[χ])S_{2}^{\mathrm{new}}(3042, [\chi]):

T52+3 T_{5}^{2} + 3 Copy content Toggle raw display
T74+24T72+36 T_{7}^{4} + 24T_{7}^{2} + 36 Copy content Toggle raw display
T17227 T_{17}^{2} - 27 Copy content Toggle raw display
T232+6T2318 T_{23}^{2} + 6T_{23} - 18 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 (T2+3)2 (T^{2} + 3)^{2} Copy content Toggle raw display
77 T4+24T2+36 T^{4} + 24T^{2} + 36 Copy content Toggle raw display
1111 T4+24T2+36 T^{4} + 24T^{2} + 36 Copy content Toggle raw display
1313 T4 T^{4} Copy content Toggle raw display
1717 (T227)2 (T^{2} - 27)^{2} Copy content Toggle raw display
1919 T4+24T2+36 T^{4} + 24T^{2} + 36 Copy content Toggle raw display
2323 (T2+6T18)2 (T^{2} + 6 T - 18)^{2} Copy content Toggle raw display
2929 (T3)4 (T - 3)^{4} Copy content Toggle raw display
3131 T4+96T2+576 T^{4} + 96T^{2} + 576 Copy content Toggle raw display
3737 (T2+9)2 (T^{2} + 9)^{2} Copy content Toggle raw display
4141 T4+42T2+9 T^{4} + 42T^{2} + 9 Copy content Toggle raw display
4343 (T2+2T26)2 (T^{2} + 2 T - 26)^{2} Copy content Toggle raw display
4747 T4+24T2+36 T^{4} + 24T^{2} + 36 Copy content Toggle raw display
5353 (T+3)4 (T + 3)^{4} Copy content Toggle raw display
5959 (T2+192)2 (T^{2} + 192)^{2} Copy content Toggle raw display
6161 (T220T+73)2 (T^{2} - 20 T + 73)^{2} Copy content Toggle raw display
6767 T4+168T2+6084 T^{4} + 168T^{2} + 6084 Copy content Toggle raw display
7171 T4+72T2+324 T^{4} + 72T^{2} + 324 Copy content Toggle raw display
7373 (T2+147)2 (T^{2} + 147)^{2} Copy content Toggle raw display
7979 (T2+4T104)2 (T^{2} + 4 T - 104)^{2} Copy content Toggle raw display
8383 T4+168T2+4356 T^{4} + 168T^{2} + 4356 Copy content Toggle raw display
8989 T4+96T2+576 T^{4} + 96T^{2} + 576 Copy content Toggle raw display
9797 (T2+36)2 (T^{2} + 36)^{2} Copy content Toggle raw display
show more
show less