L(s) = 1 | − i·2-s − 4-s − 1.73i·5-s + 4.73i·7-s + i·8-s − 1.73·10-s − 4.73i·11-s + 4.73·14-s + 16-s − 5.19·17-s − 1.26i·19-s + 1.73i·20-s − 4.73·22-s + 2.19·23-s + 2.00·25-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.5·4-s − 0.774i·5-s + 1.78i·7-s + 0.353i·8-s − 0.547·10-s − 1.42i·11-s + 1.26·14-s + 0.250·16-s − 1.26·17-s − 0.290i·19-s + 0.387i·20-s − 1.00·22-s + 0.457·23-s + 0.400·25-s + ⋯ |
Λ(s)=(=(3042s/2ΓC(s)L(s)(−0.960+0.277i)Λ(2−s)
Λ(s)=(=(3042s/2ΓC(s+1/2)L(s)(−0.960+0.277i)Λ(1−s)
Degree: |
2 |
Conductor: |
3042
= 2⋅32⋅132
|
Sign: |
−0.960+0.277i
|
Analytic conductor: |
24.2904 |
Root analytic conductor: |
4.92853 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3042(1351,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3042, ( :1/2), −0.960+0.277i)
|
Particular Values
L(1) |
≈ |
0.9261606618 |
L(21) |
≈ |
0.9261606618 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+iT |
| 3 | 1 |
| 13 | 1 |
good | 5 | 1+1.73iT−5T2 |
| 7 | 1−4.73iT−7T2 |
| 11 | 1+4.73iT−11T2 |
| 17 | 1+5.19T+17T2 |
| 19 | 1+1.26iT−19T2 |
| 23 | 1−2.19T+23T2 |
| 29 | 1−3T+29T2 |
| 31 | 1+2.53iT−31T2 |
| 37 | 1−3iT−37T2 |
| 41 | 1+0.464iT−41T2 |
| 43 | 1+6.19T+43T2 |
| 47 | 1−1.26iT−47T2 |
| 53 | 1+3T+53T2 |
| 59 | 1+13.8iT−59T2 |
| 61 | 1−4.80T+61T2 |
| 67 | 1+10.7iT−67T2 |
| 71 | 1−8.19iT−71T2 |
| 73 | 1+12.1iT−73T2 |
| 79 | 1+12.3T+79T2 |
| 83 | 1+11.6iT−83T2 |
| 89 | 1+2.53iT−89T2 |
| 97 | 1+6iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.580080998641710208433201245408, −8.151216046749202505879480909086, −6.63320076716790490822361960942, −5.94968681617951073683584634279, −5.15967365969020026069904649934, −4.60839319173876106184715581880, −3.31088023549051013013276678955, −2.64823604294301214148879193302, −1.66520142302483777679319300576, −0.30300188091268477826440440497,
1.26387557611753727194401765180, 2.61812365475114739270998892494, 3.82078439526043869015774741772, 4.38386767823403846317582874454, 5.10717238815327686419250091804, 6.43710574658513813850490025565, 7.00841506986143513427241358296, 7.18958337044036658506612967423, 8.081654031349349833089996492157, 8.990815706107538061250050632790