L(s) = 1 | + i·2-s − 4-s − 1.73i·5-s − 1.26i·7-s − i·8-s + 1.73·10-s + 1.26i·11-s + 1.26·14-s + 16-s + 5.19·17-s + 4.73i·19-s + 1.73i·20-s − 1.26·22-s − 8.19·23-s + 2.00·25-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.5·4-s − 0.774i·5-s − 0.479i·7-s − 0.353i·8-s + 0.547·10-s + 0.382i·11-s + 0.338·14-s + 0.250·16-s + 1.26·17-s + 1.08i·19-s + 0.387i·20-s − 0.270·22-s − 1.70·23-s + 0.400·25-s + ⋯ |
Λ(s)=(=(3042s/2ΓC(s)L(s)(0.960−0.277i)Λ(2−s)
Λ(s)=(=(3042s/2ΓC(s+1/2)L(s)(0.960−0.277i)Λ(1−s)
Degree: |
2 |
Conductor: |
3042
= 2⋅32⋅132
|
Sign: |
0.960−0.277i
|
Analytic conductor: |
24.2904 |
Root analytic conductor: |
4.92853 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3042(1351,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3042, ( :1/2), 0.960−0.277i)
|
Particular Values
L(1) |
≈ |
1.700817038 |
L(21) |
≈ |
1.700817038 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−iT |
| 3 | 1 |
| 13 | 1 |
good | 5 | 1+1.73iT−5T2 |
| 7 | 1+1.26iT−7T2 |
| 11 | 1−1.26iT−11T2 |
| 17 | 1−5.19T+17T2 |
| 19 | 1−4.73iT−19T2 |
| 23 | 1+8.19T+23T2 |
| 29 | 1−3T+29T2 |
| 31 | 1−9.46iT−31T2 |
| 37 | 1+3iT−37T2 |
| 41 | 1+6.46iT−41T2 |
| 43 | 1−4.19T+43T2 |
| 47 | 1+4.73iT−47T2 |
| 53 | 1+3T+53T2 |
| 59 | 1+13.8iT−59T2 |
| 61 | 1−15.1T+61T2 |
| 67 | 1−7.26iT−67T2 |
| 71 | 1−2.19iT−71T2 |
| 73 | 1+12.1iT−73T2 |
| 79 | 1−8.39T+79T2 |
| 83 | 1+5.66iT−83T2 |
| 89 | 1−9.46iT−89T2 |
| 97 | 1−6iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.528197878448980449414463757416, −8.023083020621778224621612373009, −7.32802233318404623955482718754, −6.51413863725197972569277820583, −5.61531728575718966664116971954, −5.07554022201380351734413285253, −4.11283763399458967427802181847, −3.46794654278528226964588061284, −1.88215650738788830666285664808, −0.76342137354852615322798371255,
0.855595296510717856636467497669, 2.27927250007156010545737945339, 2.88026134974295139236782063997, 3.76992010708974854253397926124, 4.66487284234912939850531083849, 5.71791356953175737763660379785, 6.23219618402024318917055737516, 7.29730763584879703496422085345, 8.023147022633971543702964668515, 8.727927020371192527495451909402