Properties

Label 2-3042-13.12-c1-0-51
Degree $2$
Conductor $3042$
Sign $-0.960 + 0.277i$
Analytic cond. $24.2904$
Root an. cond. $4.92853$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s − 4-s − 0.267i·5-s − 0.732i·7-s + i·8-s − 0.267·10-s + 4.73i·11-s − 0.732·14-s + 16-s − 2.26·17-s + 1.26i·19-s + 0.267i·20-s + 4.73·22-s − 6.19·23-s + 4.92·25-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.5·4-s − 0.119i·5-s − 0.276i·7-s + 0.353i·8-s − 0.0847·10-s + 1.42i·11-s − 0.195·14-s + 0.250·16-s − 0.550·17-s + 0.290i·19-s + 0.0599i·20-s + 1.00·22-s − 1.29·23-s + 0.985·25-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3042 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.960 + 0.277i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3042 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.960 + 0.277i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3042\)    =    \(2 \cdot 3^{2} \cdot 13^{2}\)
Sign: $-0.960 + 0.277i$
Analytic conductor: \(24.2904\)
Root analytic conductor: \(4.92853\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3042} (1351, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3042,\ (\ :1/2),\ -0.960 + 0.277i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8026172892\)
\(L(\frac12)\) \(\approx\) \(0.8026172892\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + iT \)
3 \( 1 \)
13 \( 1 \)
good5 \( 1 + 0.267iT - 5T^{2} \)
7 \( 1 + 0.732iT - 7T^{2} \)
11 \( 1 - 4.73iT - 11T^{2} \)
17 \( 1 + 2.26T + 17T^{2} \)
19 \( 1 - 1.26iT - 19T^{2} \)
23 \( 1 + 6.19T + 23T^{2} \)
29 \( 1 + 2.46T + 29T^{2} \)
31 \( 1 + 5.46iT - 31T^{2} \)
37 \( 1 + 10.4iT - 37T^{2} \)
41 \( 1 + 11.3iT - 41T^{2} \)
43 \( 1 + 7.66T + 43T^{2} \)
47 \( 1 + 8.19iT - 47T^{2} \)
53 \( 1 + 0.464T + 53T^{2} \)
59 \( 1 - 8iT - 59T^{2} \)
61 \( 1 - 1.19T + 61T^{2} \)
67 \( 1 + 11.1iT - 67T^{2} \)
71 \( 1 + 1.26iT - 71T^{2} \)
73 \( 1 - 9.73iT - 73T^{2} \)
79 \( 1 + 9.46T + 79T^{2} \)
83 \( 1 + 10.1iT - 83T^{2} \)
89 \( 1 + 2.53iT - 89T^{2} \)
97 \( 1 + 6iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.594481150303802868182784752399, −7.53862578667208030779271220572, −7.09094581939577671757210439272, −5.97920201980613615158359463612, −5.13249255116510348281264422059, −4.24551169775977822562442416109, −3.75127391137503807564301600127, −2.36840272403895561543210616928, −1.79636515511229659383477890065, −0.26085182800569717763175867203, 1.22908884002359873655489298257, 2.73994971371760346649848996072, 3.51452518265488197486432134784, 4.58682070005904547483214069612, 5.30487877025916276875374820309, 6.26083451395660273360724818217, 6.54685230359560823149645254826, 7.62209353850871041828246016213, 8.418488972189044625916330325170, 8.716727167578236702309870022480

Graph of the $Z$-function along the critical line