L(s) = 1 | − i·2-s − 4-s − 0.267i·5-s − 0.732i·7-s + i·8-s − 0.267·10-s + 4.73i·11-s − 0.732·14-s + 16-s − 2.26·17-s + 1.26i·19-s + 0.267i·20-s + 4.73·22-s − 6.19·23-s + 4.92·25-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.5·4-s − 0.119i·5-s − 0.276i·7-s + 0.353i·8-s − 0.0847·10-s + 1.42i·11-s − 0.195·14-s + 0.250·16-s − 0.550·17-s + 0.290i·19-s + 0.0599i·20-s + 1.00·22-s − 1.29·23-s + 0.985·25-s + ⋯ |
Λ(s)=(=(3042s/2ΓC(s)L(s)(−0.960+0.277i)Λ(2−s)
Λ(s)=(=(3042s/2ΓC(s+1/2)L(s)(−0.960+0.277i)Λ(1−s)
Degree: |
2 |
Conductor: |
3042
= 2⋅32⋅132
|
Sign: |
−0.960+0.277i
|
Analytic conductor: |
24.2904 |
Root analytic conductor: |
4.92853 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3042(1351,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3042, ( :1/2), −0.960+0.277i)
|
Particular Values
L(1) |
≈ |
0.8026172892 |
L(21) |
≈ |
0.8026172892 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+iT |
| 3 | 1 |
| 13 | 1 |
good | 5 | 1+0.267iT−5T2 |
| 7 | 1+0.732iT−7T2 |
| 11 | 1−4.73iT−11T2 |
| 17 | 1+2.26T+17T2 |
| 19 | 1−1.26iT−19T2 |
| 23 | 1+6.19T+23T2 |
| 29 | 1+2.46T+29T2 |
| 31 | 1+5.46iT−31T2 |
| 37 | 1+10.4iT−37T2 |
| 41 | 1+11.3iT−41T2 |
| 43 | 1+7.66T+43T2 |
| 47 | 1+8.19iT−47T2 |
| 53 | 1+0.464T+53T2 |
| 59 | 1−8iT−59T2 |
| 61 | 1−1.19T+61T2 |
| 67 | 1+11.1iT−67T2 |
| 71 | 1+1.26iT−71T2 |
| 73 | 1−9.73iT−73T2 |
| 79 | 1+9.46T+79T2 |
| 83 | 1+10.1iT−83T2 |
| 89 | 1+2.53iT−89T2 |
| 97 | 1+6iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.594481150303802868182784752399, −7.53862578667208030779271220572, −7.09094581939577671757210439272, −5.97920201980613615158359463612, −5.13249255116510348281264422059, −4.24551169775977822562442416109, −3.75127391137503807564301600127, −2.36840272403895561543210616928, −1.79636515511229659383477890065, −0.26085182800569717763175867203,
1.22908884002359873655489298257, 2.73994971371760346649848996072, 3.51452518265488197486432134784, 4.58682070005904547483214069612, 5.30487877025916276875374820309, 6.26083451395660273360724818217, 6.54685230359560823149645254826, 7.62209353850871041828246016213, 8.418488972189044625916330325170, 8.716727167578236702309870022480