Properties

Label 3042.2.b.i.1351.2
Level 30423042
Weight 22
Character 3042.1351
Analytic conductor 24.29024.290
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3042,2,Mod(1351,3042)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3042, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3042.1351"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 3042=232132 3042 = 2 \cdot 3^{2} \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3042.b (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-4,0,0,0,0,0,-8,0,0,0,4,0,4,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 24.290492294924.2904922949
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ12)\Q(\zeta_{12})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 22 2^{2}
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 1351.2
Root 0.8660250.500000i-0.866025 - 0.500000i of defining polynomial
Character χ\chi == 3042.1351
Dual form 3042.2.b.i.1351.3

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q1.00000iq21.00000q40.267949iq50.732051iq7+1.00000iq80.267949q10+4.73205iq110.732051q14+1.00000q162.26795q17+1.26795iq19+0.267949iq20+4.73205q226.19615q23+4.92820q25+0.732051iq282.46410q295.46410iq311.00000iq32+2.26795iq340.196152q3510.4641iq37+1.26795q38+0.267949q4011.3923iq417.66025q434.73205iq44+6.19615iq468.19615iq47+6.46410q494.92820iq500.464102q53+1.26795q55+0.732051q56+2.46410iq58+8.00000iq59+1.19615q615.46410q621.00000q6411.1244iq67+2.26795q68+0.196152iq701.26795iq71+9.73205iq7310.4641q741.26795iq76+3.46410q779.46410q790.267949iq8011.3923q8210.1962iq83+0.607695iq85+7.66025iq864.73205q882.53590iq89+6.19615q928.19615q94+0.339746q956.00000iq976.46410iq98+O(q100)q-1.00000i q^{2} -1.00000 q^{4} -0.267949i q^{5} -0.732051i q^{7} +1.00000i q^{8} -0.267949 q^{10} +4.73205i q^{11} -0.732051 q^{14} +1.00000 q^{16} -2.26795 q^{17} +1.26795i q^{19} +0.267949i q^{20} +4.73205 q^{22} -6.19615 q^{23} +4.92820 q^{25} +0.732051i q^{28} -2.46410 q^{29} -5.46410i q^{31} -1.00000i q^{32} +2.26795i q^{34} -0.196152 q^{35} -10.4641i q^{37} +1.26795 q^{38} +0.267949 q^{40} -11.3923i q^{41} -7.66025 q^{43} -4.73205i q^{44} +6.19615i q^{46} -8.19615i q^{47} +6.46410 q^{49} -4.92820i q^{50} -0.464102 q^{53} +1.26795 q^{55} +0.732051 q^{56} +2.46410i q^{58} +8.00000i q^{59} +1.19615 q^{61} -5.46410 q^{62} -1.00000 q^{64} -11.1244i q^{67} +2.26795 q^{68} +0.196152i q^{70} -1.26795i q^{71} +9.73205i q^{73} -10.4641 q^{74} -1.26795i q^{76} +3.46410 q^{77} -9.46410 q^{79} -0.267949i q^{80} -11.3923 q^{82} -10.1962i q^{83} +0.607695i q^{85} +7.66025i q^{86} -4.73205 q^{88} -2.53590i q^{89} +6.19615 q^{92} -8.19615 q^{94} +0.339746 q^{95} -6.00000i q^{97} -6.46410i q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q48q10+4q14+4q1616q17+12q224q238q25+4q29+20q35+12q38+8q40+4q43+12q49+12q53+12q554q5616q61++36q95+O(q100) 4 q - 4 q^{4} - 8 q^{10} + 4 q^{14} + 4 q^{16} - 16 q^{17} + 12 q^{22} - 4 q^{23} - 8 q^{25} + 4 q^{29} + 20 q^{35} + 12 q^{38} + 8 q^{40} + 4 q^{43} + 12 q^{49} + 12 q^{53} + 12 q^{55} - 4 q^{56} - 16 q^{61}+ \cdots + 36 q^{95}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3042Z)×\left(\mathbb{Z}/3042\mathbb{Z}\right)^\times.

nn 677677 847847
χ(n)\chi(n) 11 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 − 1.00000i − 0.707107i
33 0 0
44 −1.00000 −0.500000
55 − 0.267949i − 0.119831i −0.998203 0.0599153i 0.980917π-0.980917\pi
0.998203 0.0599153i 0.0190830π-0.0190830\pi
66 0 0
77 − 0.732051i − 0.276689i −0.990384 0.138345i 0.955822π-0.955822\pi
0.990384 0.138345i 0.0441781π-0.0441781\pi
88 1.00000i 0.353553i
99 0 0
1010 −0.267949 −0.0847330
1111 4.73205i 1.42677i 0.700774 + 0.713384i 0.252838π0.252838\pi
−0.700774 + 0.713384i 0.747162π0.747162\pi
1212 0 0
1313 0 0
1414 −0.732051 −0.195649
1515 0 0
1616 1.00000 0.250000
1717 −2.26795 −0.550058 −0.275029 0.961436i 0.588688π-0.588688\pi
−0.275029 + 0.961436i 0.588688π0.588688\pi
1818 0 0
1919 1.26795i 0.290887i 0.989367 + 0.145444i 0.0464610π0.0464610\pi
−0.989367 + 0.145444i 0.953539π0.953539\pi
2020 0.267949i 0.0599153i
2121 0 0
2222 4.73205 1.00888
2323 −6.19615 −1.29199 −0.645994 0.763343i 0.723557π-0.723557\pi
−0.645994 + 0.763343i 0.723557π0.723557\pi
2424 0 0
2525 4.92820 0.985641
2626 0 0
2727 0 0
2828 0.732051i 0.138345i
2929 −2.46410 −0.457572 −0.228786 0.973477i 0.573476π-0.573476\pi
−0.228786 + 0.973477i 0.573476π0.573476\pi
3030 0 0
3131 − 5.46410i − 0.981382i −0.871334 0.490691i 0.836744π-0.836744\pi
0.871334 0.490691i 0.163256π-0.163256\pi
3232 − 1.00000i − 0.176777i
3333 0 0
3434 2.26795i 0.388950i
3535 −0.196152 −0.0331558
3636 0 0
3737 − 10.4641i − 1.72029i −0.510052 0.860144i 0.670374π-0.670374\pi
0.510052 0.860144i 0.329626π-0.329626\pi
3838 1.26795 0.205689
3939 0 0
4040 0.267949 0.0423665
4141 − 11.3923i − 1.77918i −0.456761 0.889590i 0.650990π-0.650990\pi
0.456761 0.889590i 0.349010π-0.349010\pi
4242 0 0
4343 −7.66025 −1.16818 −0.584089 0.811690i 0.698548π-0.698548\pi
−0.584089 + 0.811690i 0.698548π0.698548\pi
4444 − 4.73205i − 0.713384i
4545 0 0
4646 6.19615i 0.913573i
4747 − 8.19615i − 1.19553i −0.801671 0.597766i 0.796055π-0.796055\pi
0.801671 0.597766i 0.203945π-0.203945\pi
4848 0 0
4949 6.46410 0.923443
5050 − 4.92820i − 0.696953i
5151 0 0
5252 0 0
5353 −0.464102 −0.0637493 −0.0318746 0.999492i 0.510148π-0.510148\pi
−0.0318746 + 0.999492i 0.510148π0.510148\pi
5454 0 0
5555 1.26795 0.170970
5656 0.732051 0.0978244
5757 0 0
5858 2.46410i 0.323552i
5959 8.00000i 1.04151i 0.853706 + 0.520756i 0.174350π0.174350\pi
−0.853706 + 0.520756i 0.825650π0.825650\pi
6060 0 0
6161 1.19615 0.153152 0.0765758 0.997064i 0.475601π-0.475601\pi
0.0765758 + 0.997064i 0.475601π0.475601\pi
6262 −5.46410 −0.693942
6363 0 0
6464 −1.00000 −0.125000
6565 0 0
6666 0 0
6767 − 11.1244i − 1.35906i −0.733649 0.679528i 0.762185π-0.762185\pi
0.733649 0.679528i 0.237815π-0.237815\pi
6868 2.26795 0.275029
6969 0 0
7070 0.196152i 0.0234447i
7171 − 1.26795i − 0.150478i −0.997166 0.0752389i 0.976028π-0.976028\pi
0.997166 0.0752389i 0.0239720π-0.0239720\pi
7272 0 0
7373 9.73205i 1.13905i 0.821974 + 0.569525i 0.192873π0.192873\pi
−0.821974 + 0.569525i 0.807127π0.807127\pi
7474 −10.4641 −1.21643
7575 0 0
7676 − 1.26795i − 0.145444i
7777 3.46410 0.394771
7878 0 0
7979 −9.46410 −1.06479 −0.532397 0.846495i 0.678709π-0.678709\pi
−0.532397 + 0.846495i 0.678709π0.678709\pi
8080 − 0.267949i − 0.0299576i
8181 0 0
8282 −11.3923 −1.25807
8383 − 10.1962i − 1.11917i −0.828772 0.559587i 0.810960π-0.810960\pi
0.828772 0.559587i 0.189040π-0.189040\pi
8484 0 0
8585 0.607695i 0.0659138i
8686 7.66025i 0.826026i
8787 0 0
8888 −4.73205 −0.504438
8989 − 2.53590i − 0.268805i −0.990927 0.134402i 0.957089π-0.957089\pi
0.990927 0.134402i 0.0429115π-0.0429115\pi
9090 0 0
9191 0 0
9292 6.19615 0.645994
9393 0 0
9494 −8.19615 −0.845369
9595 0.339746 0.0348572
9696 0 0
9797 − 6.00000i − 0.609208i −0.952479 0.304604i 0.901476π-0.901476\pi
0.952479 0.304604i 0.0985241π-0.0985241\pi
9898 − 6.46410i − 0.652973i
9999 0 0
100100 −4.92820 −0.492820
101101 −11.9282 −1.18690 −0.593450 0.804871i 0.702235π-0.702235\pi
−0.593450 + 0.804871i 0.702235π0.702235\pi
102102 0 0
103103 18.7321 1.84572 0.922862 0.385131i 0.125844π-0.125844\pi
0.922862 + 0.385131i 0.125844π0.125844\pi
104104 0 0
105105 0 0
106106 0.464102i 0.0450775i
107107 0.196152 0.0189628 0.00948139 0.999955i 0.496982π-0.496982\pi
0.00948139 + 0.999955i 0.496982π0.496982\pi
108108 0 0
109109 − 5.46410i − 0.523366i −0.965154 0.261683i 0.915723π-0.915723\pi
0.965154 0.261683i 0.0842775π-0.0842775\pi
110110 − 1.26795i − 0.120894i
111111 0 0
112112 − 0.732051i − 0.0691723i
113113 18.6603 1.75541 0.877705 0.479202i 0.159074π-0.159074\pi
0.877705 + 0.479202i 0.159074π0.159074\pi
114114 0 0
115115 1.66025i 0.154819i
116116 2.46410 0.228786
117117 0 0
118118 8.00000 0.736460
119119 1.66025i 0.152195i
120120 0 0
121121 −11.3923 −1.03566
122122 − 1.19615i − 0.108295i
123123 0 0
124124 5.46410i 0.490691i
125125 − 2.66025i − 0.237940i
126126 0 0
127127 −17.8564 −1.58450 −0.792250 0.610197i 0.791090π-0.791090\pi
−0.792250 + 0.610197i 0.791090π0.791090\pi
128128 1.00000i 0.0883883i
129129 0 0
130130 0 0
131131 −13.4641 −1.17636 −0.588182 0.808729i 0.700156π-0.700156\pi
−0.588182 + 0.808729i 0.700156π0.700156\pi
132132 0 0
133133 0.928203 0.0804854
134134 −11.1244 −0.960998
135135 0 0
136136 − 2.26795i − 0.194475i
137137 − 1.92820i − 0.164738i −0.996602 0.0823688i 0.973751π-0.973751\pi
0.996602 0.0823688i 0.0262485π-0.0262485\pi
138138 0 0
139139 −9.85641 −0.836009 −0.418005 0.908445i 0.637270π-0.637270\pi
−0.418005 + 0.908445i 0.637270π0.637270\pi
140140 0.196152 0.0165779
141141 0 0
142142 −1.26795 −0.106404
143143 0 0
144144 0 0
145145 0.660254i 0.0548311i
146146 9.73205 0.805430
147147 0 0
148148 10.4641i 0.860144i
149149 − 2.80385i − 0.229700i −0.993383 0.114850i 0.963361π-0.963361\pi
0.993383 0.114850i 0.0366388π-0.0366388\pi
150150 0 0
151151 − 3.26795i − 0.265942i −0.991120 0.132971i 0.957548π-0.957548\pi
0.991120 0.132971i 0.0424517π-0.0424517\pi
152152 −1.26795 −0.102844
153153 0 0
154154 − 3.46410i − 0.279145i
155155 −1.46410 −0.117599
156156 0 0
157157 −23.5885 −1.88256 −0.941282 0.337622i 0.890378π-0.890378\pi
−0.941282 + 0.337622i 0.890378π0.890378\pi
158158 9.46410i 0.752923i
159159 0 0
160160 −0.267949 −0.0211832
161161 4.53590i 0.357479i
162162 0 0
163163 6.53590i 0.511931i 0.966686 + 0.255966i 0.0823934π0.0823934\pi
−0.966686 + 0.255966i 0.917607π0.917607\pi
164164 11.3923i 0.889590i
165165 0 0
166166 −10.1962 −0.791375
167167 − 2.53590i − 0.196234i −0.995175 0.0981169i 0.968718π-0.968718\pi
0.995175 0.0981169i 0.0312819π-0.0312819\pi
168168 0 0
169169 0 0
170170 0.607695 0.0466081
171171 0 0
172172 7.66025 0.584089
173173 −16.3923 −1.24628 −0.623142 0.782109i 0.714144π-0.714144\pi
−0.623142 + 0.782109i 0.714144π0.714144\pi
174174 0 0
175175 − 3.60770i − 0.272716i
176176 4.73205i 0.356692i
177177 0 0
178178 −2.53590 −0.190074
179179 22.0526 1.64829 0.824143 0.566382i 0.191657π-0.191657\pi
0.824143 + 0.566382i 0.191657π0.191657\pi
180180 0 0
181181 −8.80385 −0.654385 −0.327192 0.944958i 0.606103π-0.606103\pi
−0.327192 + 0.944958i 0.606103π0.606103\pi
182182 0 0
183183 0 0
184184 − 6.19615i − 0.456786i
185185 −2.80385 −0.206143
186186 0 0
187187 − 10.7321i − 0.784805i
188188 8.19615i 0.597766i
189189 0 0
190190 − 0.339746i − 0.0246478i
191191 −6.92820 −0.501307 −0.250654 0.968077i 0.580646π-0.580646\pi
−0.250654 + 0.968077i 0.580646π0.580646\pi
192192 0 0
193193 8.26795i 0.595140i 0.954700 + 0.297570i 0.0961762π0.0961762\pi
−0.954700 + 0.297570i 0.903824π0.903824\pi
194194 −6.00000 −0.430775
195195 0 0
196196 −6.46410 −0.461722
197197 − 9.85641i − 0.702240i −0.936330 0.351120i 0.885801π-0.885801\pi
0.936330 0.351120i 0.114199π-0.114199\pi
198198 0 0
199199 3.80385 0.269648 0.134824 0.990870i 0.456953π-0.456953\pi
0.134824 + 0.990870i 0.456953π0.456953\pi
200200 4.92820i 0.348477i
201201 0 0
202202 11.9282i 0.839265i
203203 1.80385i 0.126605i
204204 0 0
205205 −3.05256 −0.213200
206206 − 18.7321i − 1.30512i
207207 0 0
208208 0 0
209209 −6.00000 −0.415029
210210 0 0
211211 −4.39230 −0.302379 −0.151189 0.988505i 0.548310π-0.548310\pi
−0.151189 + 0.988505i 0.548310π0.548310\pi
212212 0.464102 0.0318746
213213 0 0
214214 − 0.196152i − 0.0134087i
215215 2.05256i 0.139983i
216216 0 0
217217 −4.00000 −0.271538
218218 −5.46410 −0.370076
219219 0 0
220220 −1.26795 −0.0854851
221221 0 0
222222 0 0
223223 − 13.0718i − 0.875352i −0.899133 0.437676i 0.855802π-0.855802\pi
0.899133 0.437676i 0.144198π-0.144198\pi
224224 −0.732051 −0.0489122
225225 0 0
226226 − 18.6603i − 1.24126i
227227 1.80385i 0.119726i 0.998207 + 0.0598628i 0.0190663π0.0190663\pi
−0.998207 + 0.0598628i 0.980934π0.980934\pi
228228 0 0
229229 − 15.8564i − 1.04782i −0.851773 0.523910i 0.824473π-0.824473\pi
0.851773 0.523910i 0.175527π-0.175527\pi
230230 1.66025 0.109474
231231 0 0
232232 − 2.46410i − 0.161776i
233233 19.8564 1.30084 0.650418 0.759576i 0.274594π-0.274594\pi
0.650418 + 0.759576i 0.274594π0.274594\pi
234234 0 0
235235 −2.19615 −0.143261
236236 − 8.00000i − 0.520756i
237237 0 0
238238 1.66025 0.107618
239239 9.66025i 0.624870i 0.949939 + 0.312435i 0.101145π0.101145\pi
−0.949939 + 0.312435i 0.898855π0.898855\pi
240240 0 0
241241 17.5885i 1.13297i 0.824071 + 0.566486i 0.191698π0.191698\pi
−0.824071 + 0.566486i 0.808302π0.808302\pi
242242 11.3923i 0.732325i
243243 0 0
244244 −1.19615 −0.0765758
245245 − 1.73205i − 0.110657i
246246 0 0
247247 0 0
248248 5.46410 0.346971
249249 0 0
250250 −2.66025 −0.168249
251251 6.53590 0.412542 0.206271 0.978495i 0.433867π-0.433867\pi
0.206271 + 0.978495i 0.433867π0.433867\pi
252252 0 0
253253 − 29.3205i − 1.84336i
254254 17.8564i 1.12041i
255255 0 0
256256 1.00000 0.0625000
257257 26.6603 1.66302 0.831510 0.555509i 0.187477π-0.187477\pi
0.831510 + 0.555509i 0.187477π0.187477\pi
258258 0 0
259259 −7.66025 −0.475985
260260 0 0
261261 0 0
262262 13.4641i 0.831815i
263263 −28.0526 −1.72979 −0.864897 0.501949i 0.832617π-0.832617\pi
−0.864897 + 0.501949i 0.832617π0.832617\pi
264264 0 0
265265 0.124356i 0.00763911i
266266 − 0.928203i − 0.0569118i
267267 0 0
268268 11.1244i 0.679528i
269269 1.46410 0.0892679 0.0446339 0.999003i 0.485788π-0.485788\pi
0.0446339 + 0.999003i 0.485788π0.485788\pi
270270 0 0
271271 − 5.85641i − 0.355751i −0.984053 0.177876i 0.943078π-0.943078\pi
0.984053 0.177876i 0.0569225π-0.0569225\pi
272272 −2.26795 −0.137515
273273 0 0
274274 −1.92820 −0.116487
275275 23.3205i 1.40628i
276276 0 0
277277 2.26795 0.136268 0.0681339 0.997676i 0.478295π-0.478295\pi
0.0681339 + 0.997676i 0.478295π0.478295\pi
278278 9.85641i 0.591148i
279279 0 0
280280 − 0.196152i − 0.0117223i
281281 − 22.3205i − 1.33153i −0.746162 0.665765i 0.768105π-0.768105\pi
0.746162 0.665765i 0.231895π-0.231895\pi
282282 0 0
283283 −8.33975 −0.495746 −0.247873 0.968792i 0.579732π-0.579732\pi
−0.247873 + 0.968792i 0.579732π0.579732\pi
284284 1.26795i 0.0752389i
285285 0 0
286286 0 0
287287 −8.33975 −0.492280
288288 0 0
289289 −11.8564 −0.697436
290290 0.660254 0.0387715
291291 0 0
292292 − 9.73205i − 0.569525i
293293 − 14.5167i − 0.848072i −0.905645 0.424036i 0.860613π-0.860613\pi
0.905645 0.424036i 0.139387π-0.139387\pi
294294 0 0
295295 2.14359 0.124805
296296 10.4641 0.608214
297297 0 0
298298 −2.80385 −0.162423
299299 0 0
300300 0 0
301301 5.60770i 0.323222i
302302 −3.26795 −0.188049
303303 0 0
304304 1.26795i 0.0727219i
305305 − 0.320508i − 0.0183522i
306306 0 0
307307 − 8.58846i − 0.490169i −0.969502 0.245085i 0.921184π-0.921184\pi
0.969502 0.245085i 0.0788157π-0.0788157\pi
308308 −3.46410 −0.197386
309309 0 0
310310 1.46410i 0.0831554i
311311 15.6603 0.888012 0.444006 0.896024i 0.353557π-0.353557\pi
0.444006 + 0.896024i 0.353557π0.353557\pi
312312 0 0
313313 13.4641 0.761036 0.380518 0.924774i 0.375746π-0.375746\pi
0.380518 + 0.924774i 0.375746π0.375746\pi
314314 23.5885i 1.33117i
315315 0 0
316316 9.46410 0.532397
317317 − 3.33975i − 0.187579i −0.995592 0.0937894i 0.970102π-0.970102\pi
0.995592 0.0937894i 0.0298980π-0.0298980\pi
318318 0 0
319319 − 11.6603i − 0.652849i
320320 0.267949i 0.0149788i
321321 0 0
322322 4.53590 0.252776
323323 − 2.87564i − 0.160005i
324324 0 0
325325 0 0
326326 6.53590 0.361990
327327 0 0
328328 11.3923 0.629035
329329 −6.00000 −0.330791
330330 0 0
331331 20.0000i 1.09930i 0.835395 + 0.549650i 0.185239π0.185239\pi
−0.835395 + 0.549650i 0.814761π0.814761\pi
332332 10.1962i 0.559587i
333333 0 0
334334 −2.53590 −0.138758
335335 −2.98076 −0.162856
336336 0 0
337337 −6.85641 −0.373492 −0.186746 0.982408i 0.559794π-0.559794\pi
−0.186746 + 0.982408i 0.559794π0.559794\pi
338338 0 0
339339 0 0
340340 − 0.607695i − 0.0329569i
341341 25.8564 1.40020
342342 0 0
343343 − 9.85641i − 0.532196i
344344 − 7.66025i − 0.413013i
345345 0 0
346346 16.3923i 0.881256i
347347 −8.87564 −0.476470 −0.238235 0.971208i 0.576569π-0.576569\pi
−0.238235 + 0.971208i 0.576569π0.576569\pi
348348 0 0
349349 19.3205i 1.03420i 0.855924 + 0.517102i 0.172989π0.172989\pi
−0.855924 + 0.517102i 0.827011π0.827011\pi
350350 −3.60770 −0.192839
351351 0 0
352352 4.73205 0.252219
353353 − 19.7846i − 1.05303i −0.850166 0.526514i 0.823499π-0.823499\pi
0.850166 0.526514i 0.176501π-0.176501\pi
354354 0 0
355355 −0.339746 −0.0180318
356356 2.53590i 0.134402i
357357 0 0
358358 − 22.0526i − 1.16551i
359359 23.1244i 1.22046i 0.792226 + 0.610228i 0.208922π0.208922\pi
−0.792226 + 0.610228i 0.791078π0.791078\pi
360360 0 0
361361 17.3923 0.915384
362362 8.80385i 0.462720i
363363 0 0
364364 0 0
365365 2.60770 0.136493
366366 0 0
367367 −14.7321 −0.769007 −0.384503 0.923124i 0.625627π-0.625627\pi
−0.384503 + 0.923124i 0.625627π0.625627\pi
368368 −6.19615 −0.322997
369369 0 0
370370 2.80385i 0.145765i
371371 0.339746i 0.0176387i
372372 0 0
373373 −10.2679 −0.531654 −0.265827 0.964021i 0.585645π-0.585645\pi
−0.265827 + 0.964021i 0.585645π0.585645\pi
374374 −10.7321 −0.554941
375375 0 0
376376 8.19615 0.422684
377377 0 0
378378 0 0
379379 1.46410i 0.0752058i 0.999293 + 0.0376029i 0.0119722π0.0119722\pi
−0.999293 + 0.0376029i 0.988028π0.988028\pi
380380 −0.339746 −0.0174286
381381 0 0
382382 6.92820i 0.354478i
383383 − 5.46410i − 0.279203i −0.990208 0.139601i 0.955418π-0.955418\pi
0.990208 0.139601i 0.0445821π-0.0445821\pi
384384 0 0
385385 − 0.928203i − 0.0473056i
386386 8.26795 0.420828
387387 0 0
388388 6.00000i 0.304604i
389389 −29.7846 −1.51014 −0.755070 0.655644i 0.772397π-0.772397\pi
−0.755070 + 0.655644i 0.772397π0.772397\pi
390390 0 0
391391 14.0526 0.710668
392392 6.46410i 0.326486i
393393 0 0
394394 −9.85641 −0.496559
395395 2.53590i 0.127595i
396396 0 0
397397 0.392305i 0.0196892i 0.999952 + 0.00984461i 0.00313369π0.00313369\pi
−0.999952 + 0.00984461i 0.996866π0.996866\pi
398398 − 3.80385i − 0.190670i
399399 0 0
400400 4.92820 0.246410
401401 21.9282i 1.09504i 0.836792 + 0.547521i 0.184428π0.184428\pi
−0.836792 + 0.547521i 0.815572π0.815572\pi
402402 0 0
403403 0 0
404404 11.9282 0.593450
405405 0 0
406406 1.80385 0.0895235
407407 49.5167 2.45445
408408 0 0
409409 14.2679i 0.705505i 0.935717 + 0.352752i 0.114754π0.114754\pi
−0.935717 + 0.352752i 0.885246π0.885246\pi
410410 3.05256i 0.150755i
411411 0 0
412412 −18.7321 −0.922862
413413 5.85641 0.288175
414414 0 0
415415 −2.73205 −0.134111
416416 0 0
417417 0 0
418418 6.00000i 0.293470i
419419 10.5359 0.514712 0.257356 0.966317i 0.417149π-0.417149\pi
0.257356 + 0.966317i 0.417149π0.417149\pi
420420 0 0
421421 32.7128i 1.59432i 0.603765 + 0.797162i 0.293667π0.293667\pi
−0.603765 + 0.797162i 0.706333π0.706333\pi
422422 4.39230i 0.213814i
423423 0 0
424424 − 0.464102i − 0.0225388i
425425 −11.1769 −0.542160
426426 0 0
427427 − 0.875644i − 0.0423754i
428428 −0.196152 −0.00948139
429429 0 0
430430 2.05256 0.0989832
431431 11.1244i 0.535841i 0.963441 + 0.267921i 0.0863365π0.0863365\pi
−0.963441 + 0.267921i 0.913663π0.913663\pi
432432 0 0
433433 14.8564 0.713953 0.356977 0.934113i 0.383808π-0.383808\pi
0.356977 + 0.934113i 0.383808π0.383808\pi
434434 4.00000i 0.192006i
435435 0 0
436436 5.46410i 0.261683i
437437 − 7.85641i − 0.375823i
438438 0 0
439439 17.6603 0.842878 0.421439 0.906857i 0.361525π-0.361525\pi
0.421439 + 0.906857i 0.361525π0.361525\pi
440440 1.26795i 0.0604471i
441441 0 0
442442 0 0
443443 −36.3923 −1.72905 −0.864525 0.502589i 0.832381π-0.832381\pi
−0.864525 + 0.502589i 0.832381π0.832381\pi
444444 0 0
445445 −0.679492 −0.0322110
446446 −13.0718 −0.618968
447447 0 0
448448 0.732051i 0.0345861i
449449 − 23.3205i − 1.10056i −0.834979 0.550281i 0.814520π-0.814520\pi
0.834979 0.550281i 0.185480π-0.185480\pi
450450 0 0
451451 53.9090 2.53847
452452 −18.6603 −0.877705
453453 0 0
454454 1.80385 0.0846588
455455 0 0
456456 0 0
457457 18.6603i 0.872890i 0.899731 + 0.436445i 0.143763π0.143763\pi
−0.899731 + 0.436445i 0.856237π0.856237\pi
458458 −15.8564 −0.740921
459459 0 0
460460 − 1.66025i − 0.0774097i
461461 − 25.7321i − 1.19846i −0.800577 0.599231i 0.795473π-0.795473\pi
0.800577 0.599231i 0.204527π-0.204527\pi
462462 0 0
463463 28.0526i 1.30371i 0.758342 + 0.651856i 0.226010π0.226010\pi
−0.758342 + 0.651856i 0.773990π0.773990\pi
464464 −2.46410 −0.114393
465465 0 0
466466 − 19.8564i − 0.919830i
467467 −12.5885 −0.582524 −0.291262 0.956643i 0.594075π-0.594075\pi
−0.291262 + 0.956643i 0.594075π0.594075\pi
468468 0 0
469469 −8.14359 −0.376036
470470 2.19615i 0.101301i
471471 0 0
472472 −8.00000 −0.368230
473473 − 36.2487i − 1.66672i
474474 0 0
475475 6.24871i 0.286711i
476476 − 1.66025i − 0.0760976i
477477 0 0
478478 9.66025 0.441850
479479 26.5359i 1.21246i 0.795291 + 0.606228i 0.207318π0.207318\pi
−0.795291 + 0.606228i 0.792682π0.792682\pi
480480 0 0
481481 0 0
482482 17.5885 0.801132
483483 0 0
484484 11.3923 0.517832
485485 −1.60770 −0.0730017
486486 0 0
487487 21.1244i 0.957236i 0.878023 + 0.478618i 0.158862π0.158862\pi
−0.878023 + 0.478618i 0.841138π0.841138\pi
488488 1.19615i 0.0541473i
489489 0 0
490490 −1.73205 −0.0782461
491491 5.26795 0.237739 0.118870 0.992910i 0.462073π-0.462073\pi
0.118870 + 0.992910i 0.462073π0.462073\pi
492492 0 0
493493 5.58846 0.251691
494494 0 0
495495 0 0
496496 − 5.46410i − 0.245345i
497497 −0.928203 −0.0416356
498498 0 0
499499 32.0000i 1.43252i 0.697835 + 0.716258i 0.254147π0.254147\pi
−0.697835 + 0.716258i 0.745853π0.745853\pi
500500 2.66025i 0.118970i
501501 0 0
502502 − 6.53590i − 0.291711i
503503 10.9808 0.489608 0.244804 0.969573i 0.421276π-0.421276\pi
0.244804 + 0.969573i 0.421276π0.421276\pi
504504 0 0
505505 3.19615i 0.142227i
506506 −29.3205 −1.30346
507507 0 0
508508 17.8564 0.792250
509509 − 10.2679i − 0.455119i −0.973764 0.227559i 0.926925π-0.926925\pi
0.973764 0.227559i 0.0730746π-0.0730746\pi
510510 0 0
511511 7.12436 0.315163
512512 − 1.00000i − 0.0441942i
513513 0 0
514514 − 26.6603i − 1.17593i
515515 − 5.01924i − 0.221174i
516516 0 0
517517 38.7846 1.70575
518518 7.66025i 0.336572i
519519 0 0
520520 0 0
521521 17.4449 0.764273 0.382137 0.924106i 0.375188π-0.375188\pi
0.382137 + 0.924106i 0.375188π0.375188\pi
522522 0 0
523523 36.4449 1.59362 0.796811 0.604228i 0.206518π-0.206518\pi
0.796811 + 0.604228i 0.206518π0.206518\pi
524524 13.4641 0.588182
525525 0 0
526526 28.0526i 1.22315i
527527 12.3923i 0.539817i
528528 0 0
529529 15.3923 0.669231
530530 0.124356 0.00540166
531531 0 0
532532 −0.928203 −0.0402427
533533 0 0
534534 0 0
535535 − 0.0525589i − 0.00227232i
536536 11.1244 0.480499
537537 0 0
538538 − 1.46410i − 0.0631219i
539539 30.5885i 1.31754i
540540 0 0
541541 − 40.3205i − 1.73351i −0.498731 0.866757i 0.666200π-0.666200\pi
0.498731 0.866757i 0.333800π-0.333800\pi
542542 −5.85641 −0.251554
543543 0 0
544544 2.26795i 0.0972375i
545545 −1.46410 −0.0627152
546546 0 0
547547 6.19615 0.264928 0.132464 0.991188i 0.457711π-0.457711\pi
0.132464 + 0.991188i 0.457711π0.457711\pi
548548 1.92820i 0.0823688i
549549 0 0
550550 23.3205 0.994390
551551 − 3.12436i − 0.133102i
552552 0 0
553553 6.92820i 0.294617i
554554 − 2.26795i − 0.0963559i
555555 0 0
556556 9.85641 0.418005
557557 − 30.3731i − 1.28695i −0.765468 0.643474i 0.777492π-0.777492\pi
0.765468 0.643474i 0.222508π-0.222508\pi
558558 0 0
559559 0 0
560560 −0.196152 −0.00828895
561561 0 0
562562 −22.3205 −0.941534
563563 21.0718 0.888070 0.444035 0.896009i 0.353547π-0.353547\pi
0.444035 + 0.896009i 0.353547π0.353547\pi
564564 0 0
565565 − 5.00000i − 0.210352i
566566 8.33975i 0.350546i
567567 0 0
568568 1.26795 0.0532020
569569 −38.6410 −1.61992 −0.809958 0.586488i 0.800510π-0.800510\pi
−0.809958 + 0.586488i 0.800510π0.800510\pi
570570 0 0
571571 24.0526 1.00657 0.503284 0.864121i 0.332125π-0.332125\pi
0.503284 + 0.864121i 0.332125π0.332125\pi
572572 0 0
573573 0 0
574574 8.33975i 0.348094i
575575 −30.5359 −1.27343
576576 0 0
577577 0.267949i 0.0111549i 0.999984 + 0.00557744i 0.00177536π0.00177536\pi
−0.999984 + 0.00557744i 0.998225π0.998225\pi
578578 11.8564i 0.493161i
579579 0 0
580580 − 0.660254i − 0.0274156i
581581 −7.46410 −0.309663
582582 0 0
583583 − 2.19615i − 0.0909553i
584584 −9.73205 −0.402715
585585 0 0
586586 −14.5167 −0.599678
587587 − 16.0000i − 0.660391i −0.943913 0.330195i 0.892885π-0.892885\pi
0.943913 0.330195i 0.107115π-0.107115\pi
588588 0 0
589589 6.92820 0.285472
590590 − 2.14359i − 0.0882503i
591591 0 0
592592 − 10.4641i − 0.430072i
593593 − 36.8564i − 1.51351i −0.653698 0.756756i 0.726783π-0.726783\pi
0.653698 0.756756i 0.273217π-0.273217\pi
594594 0 0
595595 0.444864 0.0182376
596596 2.80385i 0.114850i
597597 0 0
598598 0 0
599599 9.46410 0.386693 0.193346 0.981131i 0.438066π-0.438066\pi
0.193346 + 0.981131i 0.438066π0.438066\pi
600600 0 0
601601 −5.92820 −0.241816 −0.120908 0.992664i 0.538581π-0.538581\pi
−0.120908 + 0.992664i 0.538581π0.538581\pi
602602 5.60770 0.228553
603603 0 0
604604 3.26795i 0.132971i
605605 3.05256i 0.124104i
606606 0 0
607607 0.784610 0.0318463 0.0159232 0.999873i 0.494931π-0.494931\pi
0.0159232 + 0.999873i 0.494931π0.494931\pi
608608 1.26795 0.0514221
609609 0 0
610610 −0.320508 −0.0129770
611611 0 0
612612 0 0
613613 11.3923i 0.460131i 0.973175 + 0.230065i 0.0738940π0.0738940\pi
−0.973175 + 0.230065i 0.926106π0.926106\pi
614614 −8.58846 −0.346602
615615 0 0
616616 3.46410i 0.139573i
617617 − 35.2487i − 1.41906i −0.704675 0.709530i 0.748907π-0.748907\pi
0.704675 0.709530i 0.251093π-0.251093\pi
618618 0 0
619619 − 10.5359i − 0.423474i −0.977327 0.211737i 0.932088π-0.932088\pi
0.977327 0.211737i 0.0679119π-0.0679119\pi
620620 1.46410 0.0587997
621621 0 0
622622 − 15.6603i − 0.627919i
623623 −1.85641 −0.0743754
624624 0 0
625625 23.9282 0.957128
626626 − 13.4641i − 0.538134i
627627 0 0
628628 23.5885 0.941282
629629 23.7321i 0.946259i
630630 0 0
631631 − 47.7128i − 1.89942i −0.313135 0.949709i 0.601379π-0.601379\pi
0.313135 0.949709i 0.398621π-0.398621\pi
632632 − 9.46410i − 0.376462i
633633 0 0
634634 −3.33975 −0.132638
635635 4.78461i 0.189871i
636636 0 0
637637 0 0
638638 −11.6603 −0.461634
639639 0 0
640640 0.267949 0.0105916
641641 25.9808 1.02618 0.513089 0.858335i 0.328501π-0.328501\pi
0.513089 + 0.858335i 0.328501π0.328501\pi
642642 0 0
643643 13.8564i 0.546443i 0.961951 + 0.273222i 0.0880892π0.0880892\pi
−0.961951 + 0.273222i 0.911911π0.911911\pi
644644 − 4.53590i − 0.178739i
645645 0 0
646646 −2.87564 −0.113141
647647 26.2487 1.03194 0.515972 0.856606i 0.327431π-0.327431\pi
0.515972 + 0.856606i 0.327431π0.327431\pi
648648 0 0
649649 −37.8564 −1.48599
650650 0 0
651651 0 0
652652 − 6.53590i − 0.255966i
653653 10.5359 0.412302 0.206151 0.978520i 0.433906π-0.433906\pi
0.206151 + 0.978520i 0.433906π0.433906\pi
654654 0 0
655655 3.60770i 0.140964i
656656 − 11.3923i − 0.444795i
657657 0 0
658658 6.00000i 0.233904i
659659 −38.2487 −1.48996 −0.744979 0.667088i 0.767541π-0.767541\pi
−0.744979 + 0.667088i 0.767541π0.767541\pi
660660 0 0
661661 9.39230i 0.365318i 0.983176 + 0.182659i 0.0584705π0.0584705\pi
−0.983176 + 0.182659i 0.941530π0.941530\pi
662662 20.0000 0.777322
663663 0 0
664664 10.1962 0.395687
665665 − 0.248711i − 0.00964461i
666666 0 0
667667 15.2679 0.591177
668668 2.53590i 0.0981169i
669669 0 0
670670 2.98076i 0.115157i
671671 5.66025i 0.218512i
672672 0 0
673673 −14.0718 −0.542428 −0.271214 0.962519i 0.587425π-0.587425\pi
−0.271214 + 0.962519i 0.587425π0.587425\pi
674674 6.85641i 0.264099i
675675 0 0
676676 0 0
677677 38.5359 1.48105 0.740527 0.672026i 0.234576π-0.234576\pi
0.740527 + 0.672026i 0.234576π0.234576\pi
678678 0 0
679679 −4.39230 −0.168561
680680 −0.607695 −0.0233040
681681 0 0
682682 − 25.8564i − 0.990093i
683683 − 37.8564i − 1.44854i −0.689519 0.724268i 0.742178π-0.742178\pi
0.689519 0.724268i 0.257822π-0.257822\pi
684684 0 0
685685 −0.516660 −0.0197406
686686 −9.85641 −0.376319
687687 0 0
688688 −7.66025 −0.292044
689689 0 0
690690 0 0
691691 26.3397i 1.00201i 0.865444 + 0.501006i 0.167036π0.167036\pi
−0.865444 + 0.501006i 0.832964π0.832964\pi
692692 16.3923 0.623142
693693 0 0
694694 8.87564i 0.336915i
695695 2.64102i 0.100179i
696696 0 0
697697 25.8372i 0.978653i
698698 19.3205 0.731292
699699 0 0
700700 3.60770i 0.136358i
701701 31.3205 1.18296 0.591480 0.806320i 0.298544π-0.298544\pi
0.591480 + 0.806320i 0.298544π0.298544\pi
702702 0 0
703703 13.2679 0.500410
704704 − 4.73205i − 0.178346i
705705 0 0
706706 −19.7846 −0.744604
707707 8.73205i 0.328403i
708708 0 0
709709 − 40.8564i − 1.53439i −0.641411 0.767197i 0.721651π-0.721651\pi
0.641411 0.767197i 0.278349π-0.278349\pi
710710 0.339746i 0.0127504i
711711 0 0
712712 2.53590 0.0950368
713713 33.8564i 1.26793i
714714 0 0
715715 0 0
716716 −22.0526 −0.824143
717717 0 0
718718 23.1244 0.862993
719719 −22.5359 −0.840447 −0.420224 0.907421i 0.638048π-0.638048\pi
−0.420224 + 0.907421i 0.638048π0.638048\pi
720720 0 0
721721 − 13.7128i − 0.510692i
722722 − 17.3923i − 0.647275i
723723 0 0
724724 8.80385 0.327192
725725 −12.1436 −0.451002
726726 0 0
727727 −20.9808 −0.778133 −0.389067 0.921210i 0.627202π-0.627202\pi
−0.389067 + 0.921210i 0.627202π0.627202\pi
728728 0 0
729729 0 0
730730 − 2.60770i − 0.0965151i
731731 17.3731 0.642566
732732 0 0
733733 19.0000i 0.701781i 0.936416 + 0.350891i 0.114121π0.114121\pi
−0.936416 + 0.350891i 0.885879π0.885879\pi
734734 14.7321i 0.543770i
735735 0 0
736736 6.19615i 0.228393i
737737 52.6410 1.93906
738738 0 0
739739 10.9282i 0.402000i 0.979591 + 0.201000i 0.0644192π0.0644192\pi
−0.979591 + 0.201000i 0.935581π0.935581\pi
740740 2.80385 0.103071
741741 0 0
742742 0.339746 0.0124725
743743 27.6077i 1.01283i 0.862290 + 0.506414i 0.169029π0.169029\pi
−0.862290 + 0.506414i 0.830971π0.830971\pi
744744 0 0
745745 −0.751289 −0.0275251
746746 10.2679i 0.375936i
747747 0 0
748748 10.7321i 0.392403i
749749 − 0.143594i − 0.00524679i
750750 0 0
751751 −15.9090 −0.580526 −0.290263 0.956947i 0.593743π-0.593743\pi
−0.290263 + 0.956947i 0.593743π0.593743\pi
752752 − 8.19615i − 0.298883i
753753 0 0
754754 0 0
755755 −0.875644 −0.0318680
756756 0 0
757757 7.07180 0.257029 0.128514 0.991708i 0.458979π-0.458979\pi
0.128514 + 0.991708i 0.458979π0.458979\pi
758758 1.46410 0.0531786
759759 0 0
760760 0.339746i 0.0123239i
761761 − 23.3205i − 0.845368i −0.906277 0.422684i 0.861088π-0.861088\pi
0.906277 0.422684i 0.138912π-0.138912\pi
762762 0 0
763763 −4.00000 −0.144810
764764 6.92820 0.250654
765765 0 0
766766 −5.46410 −0.197426
767767 0 0
768768 0 0
769769 − 16.1436i − 0.582153i −0.956700 0.291076i 0.905987π-0.905987\pi
0.956700 0.291076i 0.0940134π-0.0940134\pi
770770 −0.928203 −0.0334501
771771 0 0
772772 − 8.26795i − 0.297570i
773773 35.0718i 1.26144i 0.776009 + 0.630722i 0.217241π0.217241\pi
−0.776009 + 0.630722i 0.782759π0.782759\pi
774774 0 0
775775 − 26.9282i − 0.967290i
776776 6.00000 0.215387
777777 0 0
778778 29.7846i 1.06783i
779779 14.4449 0.517541
780780 0 0
781781 6.00000 0.214697
782782 − 14.0526i − 0.502518i
783783 0 0
784784 6.46410 0.230861
785785 6.32051i 0.225589i
786786 0 0
787787 − 39.3205i − 1.40162i −0.713346 0.700812i 0.752821π-0.752821\pi
0.713346 0.700812i 0.247179π-0.247179\pi
788788 9.85641i 0.351120i
789789 0 0
790790 2.53590 0.0902232
791791 − 13.6603i − 0.485703i
792792 0 0
793793 0 0
794794 0.392305 0.0139224
795795 0 0
796796 −3.80385 −0.134824
797797 −34.0000 −1.20434 −0.602171 0.798367i 0.705697π-0.705697\pi
−0.602171 + 0.798367i 0.705697π0.705697\pi
798798 0 0
799799 18.5885i 0.657612i
800800 − 4.92820i − 0.174238i
801801 0 0
802802 21.9282 0.774312
803803 −46.0526 −1.62516
804804 0 0
805805 1.21539 0.0428369
806806 0 0
807807 0 0
808808 − 11.9282i − 0.419633i
809809 22.4115 0.787948 0.393974 0.919122i 0.371100π-0.371100\pi
0.393974 + 0.919122i 0.371100π0.371100\pi
810810 0 0
811811 − 45.1769i − 1.58638i −0.608977 0.793188i 0.708420π-0.708420\pi
0.608977 0.793188i 0.291580π-0.291580\pi
812812 − 1.80385i − 0.0633026i
813813 0 0
814814 − 49.5167i − 1.73556i
815815 1.75129 0.0613450
816816 0 0
817817 − 9.71281i − 0.339808i
818818 14.2679 0.498867
819819 0 0
820820 3.05256 0.106600
821821 − 12.9282i − 0.451197i −0.974220 0.225599i 0.927566π-0.927566\pi
0.974220 0.225599i 0.0724338π-0.0724338\pi
822822 0 0
823823 41.5692 1.44901 0.724506 0.689269i 0.242068π-0.242068\pi
0.724506 + 0.689269i 0.242068π0.242068\pi
824824 18.7321i 0.652562i
825825 0 0
826826 − 5.85641i − 0.203770i
827827 33.4641i 1.16366i 0.813310 + 0.581830i 0.197663π0.197663\pi
−0.813310 + 0.581830i 0.802337π0.802337\pi
828828 0 0
829829 −12.1244 −0.421096 −0.210548 0.977583i 0.567525π-0.567525\pi
−0.210548 + 0.977583i 0.567525π0.567525\pi
830830 2.73205i 0.0948309i
831831 0 0
832832 0 0
833833 −14.6603 −0.507948
834834 0 0
835835 −0.679492 −0.0235148
836836 6.00000 0.207514
837837 0 0
838838 − 10.5359i − 0.363957i
839839 14.1436i 0.488291i 0.969739 + 0.244146i 0.0785075π0.0785075\pi
−0.969739 + 0.244146i 0.921493π0.921493\pi
840840 0 0
841841 −22.9282 −0.790628
842842 32.7128 1.12736
843843 0 0
844844 4.39230 0.151189
845845 0 0
846846 0 0
847847 8.33975i 0.286557i
848848 −0.464102 −0.0159373
849849 0 0
850850 11.1769i 0.383365i
851851 64.8372i 2.22259i
852852 0 0
853853 − 8.17691i − 0.279972i −0.990153 0.139986i 0.955294π-0.955294\pi
0.990153 0.139986i 0.0447058π-0.0447058\pi
854854 −0.875644 −0.0299639
855855 0 0
856856 0.196152i 0.00670435i
857857 −19.4449 −0.664224 −0.332112 0.943240i 0.607761π-0.607761\pi
−0.332112 + 0.943240i 0.607761π0.607761\pi
858858 0 0
859859 −22.8756 −0.780507 −0.390253 0.920707i 0.627613π-0.627613\pi
−0.390253 + 0.920707i 0.627613π0.627613\pi
860860 − 2.05256i − 0.0699917i
861861 0 0
862862 11.1244 0.378897
863863 − 7.12436i − 0.242516i −0.992621 0.121258i 0.961307π-0.961307\pi
0.992621 0.121258i 0.0386928π-0.0386928\pi
864864 0 0
865865 4.39230i 0.149343i
866866 − 14.8564i − 0.504841i
867867 0 0
868868 4.00000 0.135769
869869 − 44.7846i − 1.51921i
870870 0 0
871871 0 0
872872 5.46410 0.185038
873873 0 0
874874 −7.85641 −0.265747
875875 −1.94744 −0.0658355
876876 0 0
877877 10.0718i 0.340100i 0.985435 + 0.170050i 0.0543930π0.0543930\pi
−0.985435 + 0.170050i 0.945607π0.945607\pi
878878 − 17.6603i − 0.596005i
879879 0 0
880880 1.26795 0.0427426
881881 51.8372 1.74644 0.873219 0.487327i 0.162028π-0.162028\pi
0.873219 + 0.487327i 0.162028π0.162028\pi
882882 0 0
883883 −29.0718 −0.978344 −0.489172 0.872187i 0.662701π-0.662701\pi
−0.489172 + 0.872187i 0.662701π0.662701\pi
884884 0 0
885885 0 0
886886 36.3923i 1.22262i
887887 −10.1436 −0.340589 −0.170294 0.985393i 0.554472π-0.554472\pi
−0.170294 + 0.985393i 0.554472π0.554472\pi
888888 0 0
889889 13.0718i 0.438414i
890890 0.679492i 0.0227766i
891891 0 0
892892 13.0718i 0.437676i
893893 10.3923 0.347765
894894 0 0
895895 − 5.90897i − 0.197515i
896896 0.732051 0.0244561
897897 0 0
898898 −23.3205 −0.778215
899899 13.4641i 0.449053i
900900 0 0
901901 1.05256 0.0350658
902902 − 53.9090i − 1.79497i
903903 0 0
904904 18.6603i 0.620631i
905905 2.35898i 0.0784153i
906906 0 0
907907 −15.6077 −0.518245 −0.259123 0.965844i 0.583433π-0.583433\pi
−0.259123 + 0.965844i 0.583433π0.583433\pi
908908 − 1.80385i − 0.0598628i
909909 0 0
910910 0 0
911911 9.46410 0.313560 0.156780 0.987634i 0.449889π-0.449889\pi
0.156780 + 0.987634i 0.449889π0.449889\pi
912912 0 0
913913 48.2487 1.59680
914914 18.6603 0.617226
915915 0 0
916916 15.8564i 0.523910i
917917 9.85641i 0.325487i
918918 0 0
919919 −57.9615 −1.91197 −0.955987 0.293409i 0.905210π-0.905210\pi
−0.955987 + 0.293409i 0.905210π0.905210\pi
920920 −1.66025 −0.0547370
921921 0 0
922922 −25.7321 −0.847440
923923 0 0
924924 0 0
925925 − 51.5692i − 1.69559i
926926 28.0526 0.921864
927927 0 0
928928 2.46410i 0.0808881i
929929 − 9.24871i − 0.303440i −0.988423 0.151720i 0.951519π-0.951519\pi
0.988423 0.151720i 0.0484813π-0.0484813\pi
930930 0 0
931931 8.19615i 0.268618i
932932 −19.8564 −0.650418
933933 0 0
934934 12.5885i 0.411907i
935935 −2.87564 −0.0940436
936936 0 0
937937 43.2487 1.41287 0.706437 0.707776i 0.250301π-0.250301\pi
0.706437 + 0.707776i 0.250301π0.250301\pi
938938 8.14359i 0.265898i
939939 0 0
940940 2.19615 0.0716306
941941 56.6410i 1.84644i 0.384267 + 0.923222i 0.374454π0.374454\pi
−0.384267 + 0.923222i 0.625546π0.625546\pi
942942 0 0
943943 70.5885i 2.29868i
944944 8.00000i 0.260378i
945945 0 0
946946 −36.2487 −1.17855
947947 34.9282i 1.13501i 0.823369 + 0.567507i 0.192092π0.192092\pi
−0.823369 + 0.567507i 0.807908π0.807908\pi
948948 0 0
949949 0 0
950950 6.24871 0.202735
951951 0 0
952952 −1.66025 −0.0538091
953953 −41.5692 −1.34656 −0.673280 0.739388i 0.735115π-0.735115\pi
−0.673280 + 0.739388i 0.735115π0.735115\pi
954954 0 0
955955 1.85641i 0.0600719i
956956 − 9.66025i − 0.312435i
957957 0 0
958958 26.5359 0.857336
959959 −1.41154 −0.0455811
960960 0 0
961961 1.14359 0.0368901
962962 0 0
963963 0 0
964964 − 17.5885i − 0.566486i
965965 2.21539 0.0713159
966966 0 0
967967 − 18.8756i − 0.607000i −0.952831 0.303500i 0.901845π-0.901845\pi
0.952831 0.303500i 0.0981552π-0.0981552\pi
968968 − 11.3923i − 0.366163i
969969 0 0
970970 1.60770i 0.0516200i
971971 18.2487 0.585629 0.292815 0.956169i 0.405408π-0.405408\pi
0.292815 + 0.956169i 0.405408π0.405408\pi
972972 0 0
973973 7.21539i 0.231315i
974974 21.1244 0.676868
975975 0 0
976976 1.19615 0.0382879
977977 − 32.0718i − 1.02607i −0.858368 0.513034i 0.828522π-0.828522\pi
0.858368 0.513034i 0.171478π-0.171478\pi
978978 0 0
979979 12.0000 0.383522
980980 1.73205i 0.0553283i
981981 0 0
982982 − 5.26795i − 0.168107i
983983 − 20.7846i − 0.662926i −0.943468 0.331463i 0.892458π-0.892458\pi
0.943468 0.331463i 0.107542π-0.107542\pi
984984 0 0
985985 −2.64102 −0.0841498
986986 − 5.58846i − 0.177973i
987987 0 0
988988 0 0
989989 47.4641 1.50927
990990 0 0
991991 −8.58846 −0.272821 −0.136411 0.990652i 0.543557π-0.543557\pi
−0.136411 + 0.990652i 0.543557π0.543557\pi
992992 −5.46410 −0.173485
993993 0 0
994994 0.928203i 0.0294408i
995995 − 1.01924i − 0.0323120i
996996 0 0
997997 38.6603 1.22438 0.612191 0.790710i 0.290288π-0.290288\pi
0.612191 + 0.790710i 0.290288π0.290288\pi
998998 32.0000 1.01294
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3042.2.b.i.1351.2 4
3.2 odd 2 1014.2.b.e.337.3 4
13.5 odd 4 3042.2.a.p.1.2 2
13.8 odd 4 3042.2.a.y.1.1 2
13.9 even 3 234.2.l.c.127.1 4
13.10 even 6 234.2.l.c.199.1 4
13.12 even 2 inner 3042.2.b.i.1351.3 4
39.2 even 12 1014.2.e.g.529.1 4
39.5 even 4 1014.2.a.k.1.1 2
39.8 even 4 1014.2.a.i.1.2 2
39.11 even 12 1014.2.e.i.529.2 4
39.17 odd 6 1014.2.i.a.361.1 4
39.20 even 12 1014.2.e.i.991.2 4
39.23 odd 6 78.2.i.a.43.2 4
39.29 odd 6 1014.2.i.a.823.1 4
39.32 even 12 1014.2.e.g.991.1 4
39.35 odd 6 78.2.i.a.49.2 yes 4
39.38 odd 2 1014.2.b.e.337.2 4
52.23 odd 6 1872.2.by.h.433.2 4
52.35 odd 6 1872.2.by.h.1297.1 4
156.23 even 6 624.2.bv.e.433.1 4
156.35 even 6 624.2.bv.e.49.2 4
156.47 odd 4 8112.2.a.bj.1.2 2
156.83 odd 4 8112.2.a.bp.1.1 2
195.23 even 12 1950.2.y.g.199.1 4
195.62 even 12 1950.2.y.b.199.2 4
195.74 odd 6 1950.2.bc.d.751.1 4
195.113 even 12 1950.2.y.b.49.2 4
195.152 even 12 1950.2.y.g.49.1 4
195.179 odd 6 1950.2.bc.d.901.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.2.i.a.43.2 4 39.23 odd 6
78.2.i.a.49.2 yes 4 39.35 odd 6
234.2.l.c.127.1 4 13.9 even 3
234.2.l.c.199.1 4 13.10 even 6
624.2.bv.e.49.2 4 156.35 even 6
624.2.bv.e.433.1 4 156.23 even 6
1014.2.a.i.1.2 2 39.8 even 4
1014.2.a.k.1.1 2 39.5 even 4
1014.2.b.e.337.2 4 39.38 odd 2
1014.2.b.e.337.3 4 3.2 odd 2
1014.2.e.g.529.1 4 39.2 even 12
1014.2.e.g.991.1 4 39.32 even 12
1014.2.e.i.529.2 4 39.11 even 12
1014.2.e.i.991.2 4 39.20 even 12
1014.2.i.a.361.1 4 39.17 odd 6
1014.2.i.a.823.1 4 39.29 odd 6
1872.2.by.h.433.2 4 52.23 odd 6
1872.2.by.h.1297.1 4 52.35 odd 6
1950.2.y.b.49.2 4 195.113 even 12
1950.2.y.b.199.2 4 195.62 even 12
1950.2.y.g.49.1 4 195.152 even 12
1950.2.y.g.199.1 4 195.23 even 12
1950.2.bc.d.751.1 4 195.74 odd 6
1950.2.bc.d.901.1 4 195.179 odd 6
3042.2.a.p.1.2 2 13.5 odd 4
3042.2.a.y.1.1 2 13.8 odd 4
3042.2.b.i.1351.2 4 1.1 even 1 trivial
3042.2.b.i.1351.3 4 13.12 even 2 inner
8112.2.a.bj.1.2 2 156.47 odd 4
8112.2.a.bp.1.1 2 156.83 odd 4