Properties

Label 3042.2.b.i.1351.3
Level $3042$
Weight $2$
Character 3042.1351
Analytic conductor $24.290$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3042,2,Mod(1351,3042)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3042, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3042.1351");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3042 = 2 \cdot 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3042.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.2904922949\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1351.3
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 3042.1351
Dual form 3042.2.b.i.1351.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{4} +0.267949i q^{5} +0.732051i q^{7} -1.00000i q^{8} -0.267949 q^{10} -4.73205i q^{11} -0.732051 q^{14} +1.00000 q^{16} -2.26795 q^{17} -1.26795i q^{19} -0.267949i q^{20} +4.73205 q^{22} -6.19615 q^{23} +4.92820 q^{25} -0.732051i q^{28} -2.46410 q^{29} +5.46410i q^{31} +1.00000i q^{32} -2.26795i q^{34} -0.196152 q^{35} +10.4641i q^{37} +1.26795 q^{38} +0.267949 q^{40} +11.3923i q^{41} -7.66025 q^{43} +4.73205i q^{44} -6.19615i q^{46} +8.19615i q^{47} +6.46410 q^{49} +4.92820i q^{50} -0.464102 q^{53} +1.26795 q^{55} +0.732051 q^{56} -2.46410i q^{58} -8.00000i q^{59} +1.19615 q^{61} -5.46410 q^{62} -1.00000 q^{64} +11.1244i q^{67} +2.26795 q^{68} -0.196152i q^{70} +1.26795i q^{71} -9.73205i q^{73} -10.4641 q^{74} +1.26795i q^{76} +3.46410 q^{77} -9.46410 q^{79} +0.267949i q^{80} -11.3923 q^{82} +10.1962i q^{83} -0.607695i q^{85} -7.66025i q^{86} -4.73205 q^{88} +2.53590i q^{89} +6.19615 q^{92} -8.19615 q^{94} +0.339746 q^{95} +6.00000i q^{97} +6.46410i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} - 8 q^{10} + 4 q^{14} + 4 q^{16} - 16 q^{17} + 12 q^{22} - 4 q^{23} - 8 q^{25} + 4 q^{29} + 20 q^{35} + 12 q^{38} + 8 q^{40} + 4 q^{43} + 12 q^{49} + 12 q^{53} + 12 q^{55} - 4 q^{56} - 16 q^{61}+ \cdots + 36 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3042\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 0.267949i 0.119831i 0.998203 + 0.0599153i \(0.0190830\pi\)
−0.998203 + 0.0599153i \(0.980917\pi\)
\(6\) 0 0
\(7\) 0.732051i 0.276689i 0.990384 + 0.138345i \(0.0441781\pi\)
−0.990384 + 0.138345i \(0.955822\pi\)
\(8\) − 1.00000i − 0.353553i
\(9\) 0 0
\(10\) −0.267949 −0.0847330
\(11\) − 4.73205i − 1.42677i −0.700774 0.713384i \(-0.747162\pi\)
0.700774 0.713384i \(-0.252838\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) −0.732051 −0.195649
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −2.26795 −0.550058 −0.275029 0.961436i \(-0.588688\pi\)
−0.275029 + 0.961436i \(0.588688\pi\)
\(18\) 0 0
\(19\) − 1.26795i − 0.290887i −0.989367 0.145444i \(-0.953539\pi\)
0.989367 0.145444i \(-0.0464610\pi\)
\(20\) − 0.267949i − 0.0599153i
\(21\) 0 0
\(22\) 4.73205 1.00888
\(23\) −6.19615 −1.29199 −0.645994 0.763343i \(-0.723557\pi\)
−0.645994 + 0.763343i \(0.723557\pi\)
\(24\) 0 0
\(25\) 4.92820 0.985641
\(26\) 0 0
\(27\) 0 0
\(28\) − 0.732051i − 0.138345i
\(29\) −2.46410 −0.457572 −0.228786 0.973477i \(-0.573476\pi\)
−0.228786 + 0.973477i \(0.573476\pi\)
\(30\) 0 0
\(31\) 5.46410i 0.981382i 0.871334 + 0.490691i \(0.163256\pi\)
−0.871334 + 0.490691i \(0.836744\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) − 2.26795i − 0.388950i
\(35\) −0.196152 −0.0331558
\(36\) 0 0
\(37\) 10.4641i 1.72029i 0.510052 + 0.860144i \(0.329626\pi\)
−0.510052 + 0.860144i \(0.670374\pi\)
\(38\) 1.26795 0.205689
\(39\) 0 0
\(40\) 0.267949 0.0423665
\(41\) 11.3923i 1.77918i 0.456761 + 0.889590i \(0.349010\pi\)
−0.456761 + 0.889590i \(0.650990\pi\)
\(42\) 0 0
\(43\) −7.66025 −1.16818 −0.584089 0.811690i \(-0.698548\pi\)
−0.584089 + 0.811690i \(0.698548\pi\)
\(44\) 4.73205i 0.713384i
\(45\) 0 0
\(46\) − 6.19615i − 0.913573i
\(47\) 8.19615i 1.19553i 0.801671 + 0.597766i \(0.203945\pi\)
−0.801671 + 0.597766i \(0.796055\pi\)
\(48\) 0 0
\(49\) 6.46410 0.923443
\(50\) 4.92820i 0.696953i
\(51\) 0 0
\(52\) 0 0
\(53\) −0.464102 −0.0637493 −0.0318746 0.999492i \(-0.510148\pi\)
−0.0318746 + 0.999492i \(0.510148\pi\)
\(54\) 0 0
\(55\) 1.26795 0.170970
\(56\) 0.732051 0.0978244
\(57\) 0 0
\(58\) − 2.46410i − 0.323552i
\(59\) − 8.00000i − 1.04151i −0.853706 0.520756i \(-0.825650\pi\)
0.853706 0.520756i \(-0.174350\pi\)
\(60\) 0 0
\(61\) 1.19615 0.153152 0.0765758 0.997064i \(-0.475601\pi\)
0.0765758 + 0.997064i \(0.475601\pi\)
\(62\) −5.46410 −0.693942
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 11.1244i 1.35906i 0.733649 + 0.679528i \(0.237815\pi\)
−0.733649 + 0.679528i \(0.762185\pi\)
\(68\) 2.26795 0.275029
\(69\) 0 0
\(70\) − 0.196152i − 0.0234447i
\(71\) 1.26795i 0.150478i 0.997166 + 0.0752389i \(0.0239720\pi\)
−0.997166 + 0.0752389i \(0.976028\pi\)
\(72\) 0 0
\(73\) − 9.73205i − 1.13905i −0.821974 0.569525i \(-0.807127\pi\)
0.821974 0.569525i \(-0.192873\pi\)
\(74\) −10.4641 −1.21643
\(75\) 0 0
\(76\) 1.26795i 0.145444i
\(77\) 3.46410 0.394771
\(78\) 0 0
\(79\) −9.46410 −1.06479 −0.532397 0.846495i \(-0.678709\pi\)
−0.532397 + 0.846495i \(0.678709\pi\)
\(80\) 0.267949i 0.0299576i
\(81\) 0 0
\(82\) −11.3923 −1.25807
\(83\) 10.1962i 1.11917i 0.828772 + 0.559587i \(0.189040\pi\)
−0.828772 + 0.559587i \(0.810960\pi\)
\(84\) 0 0
\(85\) − 0.607695i − 0.0659138i
\(86\) − 7.66025i − 0.826026i
\(87\) 0 0
\(88\) −4.73205 −0.504438
\(89\) 2.53590i 0.268805i 0.990927 + 0.134402i \(0.0429115\pi\)
−0.990927 + 0.134402i \(0.957089\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 6.19615 0.645994
\(93\) 0 0
\(94\) −8.19615 −0.845369
\(95\) 0.339746 0.0348572
\(96\) 0 0
\(97\) 6.00000i 0.609208i 0.952479 + 0.304604i \(0.0985241\pi\)
−0.952479 + 0.304604i \(0.901476\pi\)
\(98\) 6.46410i 0.652973i
\(99\) 0 0
\(100\) −4.92820 −0.492820
\(101\) −11.9282 −1.18690 −0.593450 0.804871i \(-0.702235\pi\)
−0.593450 + 0.804871i \(0.702235\pi\)
\(102\) 0 0
\(103\) 18.7321 1.84572 0.922862 0.385131i \(-0.125844\pi\)
0.922862 + 0.385131i \(0.125844\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) − 0.464102i − 0.0450775i
\(107\) 0.196152 0.0189628 0.00948139 0.999955i \(-0.496982\pi\)
0.00948139 + 0.999955i \(0.496982\pi\)
\(108\) 0 0
\(109\) 5.46410i 0.523366i 0.965154 + 0.261683i \(0.0842775\pi\)
−0.965154 + 0.261683i \(0.915723\pi\)
\(110\) 1.26795i 0.120894i
\(111\) 0 0
\(112\) 0.732051i 0.0691723i
\(113\) 18.6603 1.75541 0.877705 0.479202i \(-0.159074\pi\)
0.877705 + 0.479202i \(0.159074\pi\)
\(114\) 0 0
\(115\) − 1.66025i − 0.154819i
\(116\) 2.46410 0.228786
\(117\) 0 0
\(118\) 8.00000 0.736460
\(119\) − 1.66025i − 0.152195i
\(120\) 0 0
\(121\) −11.3923 −1.03566
\(122\) 1.19615i 0.108295i
\(123\) 0 0
\(124\) − 5.46410i − 0.490691i
\(125\) 2.66025i 0.237940i
\(126\) 0 0
\(127\) −17.8564 −1.58450 −0.792250 0.610197i \(-0.791090\pi\)
−0.792250 + 0.610197i \(0.791090\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) 0 0
\(130\) 0 0
\(131\) −13.4641 −1.17636 −0.588182 0.808729i \(-0.700156\pi\)
−0.588182 + 0.808729i \(0.700156\pi\)
\(132\) 0 0
\(133\) 0.928203 0.0804854
\(134\) −11.1244 −0.960998
\(135\) 0 0
\(136\) 2.26795i 0.194475i
\(137\) 1.92820i 0.164738i 0.996602 + 0.0823688i \(0.0262485\pi\)
−0.996602 + 0.0823688i \(0.973751\pi\)
\(138\) 0 0
\(139\) −9.85641 −0.836009 −0.418005 0.908445i \(-0.637270\pi\)
−0.418005 + 0.908445i \(0.637270\pi\)
\(140\) 0.196152 0.0165779
\(141\) 0 0
\(142\) −1.26795 −0.106404
\(143\) 0 0
\(144\) 0 0
\(145\) − 0.660254i − 0.0548311i
\(146\) 9.73205 0.805430
\(147\) 0 0
\(148\) − 10.4641i − 0.860144i
\(149\) 2.80385i 0.229700i 0.993383 + 0.114850i \(0.0366388\pi\)
−0.993383 + 0.114850i \(0.963361\pi\)
\(150\) 0 0
\(151\) 3.26795i 0.265942i 0.991120 + 0.132971i \(0.0424517\pi\)
−0.991120 + 0.132971i \(0.957548\pi\)
\(152\) −1.26795 −0.102844
\(153\) 0 0
\(154\) 3.46410i 0.279145i
\(155\) −1.46410 −0.117599
\(156\) 0 0
\(157\) −23.5885 −1.88256 −0.941282 0.337622i \(-0.890378\pi\)
−0.941282 + 0.337622i \(0.890378\pi\)
\(158\) − 9.46410i − 0.752923i
\(159\) 0 0
\(160\) −0.267949 −0.0211832
\(161\) − 4.53590i − 0.357479i
\(162\) 0 0
\(163\) − 6.53590i − 0.511931i −0.966686 0.255966i \(-0.917607\pi\)
0.966686 0.255966i \(-0.0823934\pi\)
\(164\) − 11.3923i − 0.889590i
\(165\) 0 0
\(166\) −10.1962 −0.791375
\(167\) 2.53590i 0.196234i 0.995175 + 0.0981169i \(0.0312819\pi\)
−0.995175 + 0.0981169i \(0.968718\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0.607695 0.0466081
\(171\) 0 0
\(172\) 7.66025 0.584089
\(173\) −16.3923 −1.24628 −0.623142 0.782109i \(-0.714144\pi\)
−0.623142 + 0.782109i \(0.714144\pi\)
\(174\) 0 0
\(175\) 3.60770i 0.272716i
\(176\) − 4.73205i − 0.356692i
\(177\) 0 0
\(178\) −2.53590 −0.190074
\(179\) 22.0526 1.64829 0.824143 0.566382i \(-0.191657\pi\)
0.824143 + 0.566382i \(0.191657\pi\)
\(180\) 0 0
\(181\) −8.80385 −0.654385 −0.327192 0.944958i \(-0.606103\pi\)
−0.327192 + 0.944958i \(0.606103\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 6.19615i 0.456786i
\(185\) −2.80385 −0.206143
\(186\) 0 0
\(187\) 10.7321i 0.784805i
\(188\) − 8.19615i − 0.597766i
\(189\) 0 0
\(190\) 0.339746i 0.0246478i
\(191\) −6.92820 −0.501307 −0.250654 0.968077i \(-0.580646\pi\)
−0.250654 + 0.968077i \(0.580646\pi\)
\(192\) 0 0
\(193\) − 8.26795i − 0.595140i −0.954700 0.297570i \(-0.903824\pi\)
0.954700 0.297570i \(-0.0961762\pi\)
\(194\) −6.00000 −0.430775
\(195\) 0 0
\(196\) −6.46410 −0.461722
\(197\) 9.85641i 0.702240i 0.936330 + 0.351120i \(0.114199\pi\)
−0.936330 + 0.351120i \(0.885801\pi\)
\(198\) 0 0
\(199\) 3.80385 0.269648 0.134824 0.990870i \(-0.456953\pi\)
0.134824 + 0.990870i \(0.456953\pi\)
\(200\) − 4.92820i − 0.348477i
\(201\) 0 0
\(202\) − 11.9282i − 0.839265i
\(203\) − 1.80385i − 0.126605i
\(204\) 0 0
\(205\) −3.05256 −0.213200
\(206\) 18.7321i 1.30512i
\(207\) 0 0
\(208\) 0 0
\(209\) −6.00000 −0.415029
\(210\) 0 0
\(211\) −4.39230 −0.302379 −0.151189 0.988505i \(-0.548310\pi\)
−0.151189 + 0.988505i \(0.548310\pi\)
\(212\) 0.464102 0.0318746
\(213\) 0 0
\(214\) 0.196152i 0.0134087i
\(215\) − 2.05256i − 0.139983i
\(216\) 0 0
\(217\) −4.00000 −0.271538
\(218\) −5.46410 −0.370076
\(219\) 0 0
\(220\) −1.26795 −0.0854851
\(221\) 0 0
\(222\) 0 0
\(223\) 13.0718i 0.875352i 0.899133 + 0.437676i \(0.144198\pi\)
−0.899133 + 0.437676i \(0.855802\pi\)
\(224\) −0.732051 −0.0489122
\(225\) 0 0
\(226\) 18.6603i 1.24126i
\(227\) − 1.80385i − 0.119726i −0.998207 0.0598628i \(-0.980934\pi\)
0.998207 0.0598628i \(-0.0190663\pi\)
\(228\) 0 0
\(229\) 15.8564i 1.04782i 0.851773 + 0.523910i \(0.175527\pi\)
−0.851773 + 0.523910i \(0.824473\pi\)
\(230\) 1.66025 0.109474
\(231\) 0 0
\(232\) 2.46410i 0.161776i
\(233\) 19.8564 1.30084 0.650418 0.759576i \(-0.274594\pi\)
0.650418 + 0.759576i \(0.274594\pi\)
\(234\) 0 0
\(235\) −2.19615 −0.143261
\(236\) 8.00000i 0.520756i
\(237\) 0 0
\(238\) 1.66025 0.107618
\(239\) − 9.66025i − 0.624870i −0.949939 0.312435i \(-0.898855\pi\)
0.949939 0.312435i \(-0.101145\pi\)
\(240\) 0 0
\(241\) − 17.5885i − 1.13297i −0.824071 0.566486i \(-0.808302\pi\)
0.824071 0.566486i \(-0.191698\pi\)
\(242\) − 11.3923i − 0.732325i
\(243\) 0 0
\(244\) −1.19615 −0.0765758
\(245\) 1.73205i 0.110657i
\(246\) 0 0
\(247\) 0 0
\(248\) 5.46410 0.346971
\(249\) 0 0
\(250\) −2.66025 −0.168249
\(251\) 6.53590 0.412542 0.206271 0.978495i \(-0.433867\pi\)
0.206271 + 0.978495i \(0.433867\pi\)
\(252\) 0 0
\(253\) 29.3205i 1.84336i
\(254\) − 17.8564i − 1.12041i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 26.6603 1.66302 0.831510 0.555509i \(-0.187477\pi\)
0.831510 + 0.555509i \(0.187477\pi\)
\(258\) 0 0
\(259\) −7.66025 −0.475985
\(260\) 0 0
\(261\) 0 0
\(262\) − 13.4641i − 0.831815i
\(263\) −28.0526 −1.72979 −0.864897 0.501949i \(-0.832617\pi\)
−0.864897 + 0.501949i \(0.832617\pi\)
\(264\) 0 0
\(265\) − 0.124356i − 0.00763911i
\(266\) 0.928203i 0.0569118i
\(267\) 0 0
\(268\) − 11.1244i − 0.679528i
\(269\) 1.46410 0.0892679 0.0446339 0.999003i \(-0.485788\pi\)
0.0446339 + 0.999003i \(0.485788\pi\)
\(270\) 0 0
\(271\) 5.85641i 0.355751i 0.984053 + 0.177876i \(0.0569225\pi\)
−0.984053 + 0.177876i \(0.943078\pi\)
\(272\) −2.26795 −0.137515
\(273\) 0 0
\(274\) −1.92820 −0.116487
\(275\) − 23.3205i − 1.40628i
\(276\) 0 0
\(277\) 2.26795 0.136268 0.0681339 0.997676i \(-0.478295\pi\)
0.0681339 + 0.997676i \(0.478295\pi\)
\(278\) − 9.85641i − 0.591148i
\(279\) 0 0
\(280\) 0.196152i 0.0117223i
\(281\) 22.3205i 1.33153i 0.746162 + 0.665765i \(0.231895\pi\)
−0.746162 + 0.665765i \(0.768105\pi\)
\(282\) 0 0
\(283\) −8.33975 −0.495746 −0.247873 0.968792i \(-0.579732\pi\)
−0.247873 + 0.968792i \(0.579732\pi\)
\(284\) − 1.26795i − 0.0752389i
\(285\) 0 0
\(286\) 0 0
\(287\) −8.33975 −0.492280
\(288\) 0 0
\(289\) −11.8564 −0.697436
\(290\) 0.660254 0.0387715
\(291\) 0 0
\(292\) 9.73205i 0.569525i
\(293\) 14.5167i 0.848072i 0.905645 + 0.424036i \(0.139387\pi\)
−0.905645 + 0.424036i \(0.860613\pi\)
\(294\) 0 0
\(295\) 2.14359 0.124805
\(296\) 10.4641 0.608214
\(297\) 0 0
\(298\) −2.80385 −0.162423
\(299\) 0 0
\(300\) 0 0
\(301\) − 5.60770i − 0.323222i
\(302\) −3.26795 −0.188049
\(303\) 0 0
\(304\) − 1.26795i − 0.0727219i
\(305\) 0.320508i 0.0183522i
\(306\) 0 0
\(307\) 8.58846i 0.490169i 0.969502 + 0.245085i \(0.0788157\pi\)
−0.969502 + 0.245085i \(0.921184\pi\)
\(308\) −3.46410 −0.197386
\(309\) 0 0
\(310\) − 1.46410i − 0.0831554i
\(311\) 15.6603 0.888012 0.444006 0.896024i \(-0.353557\pi\)
0.444006 + 0.896024i \(0.353557\pi\)
\(312\) 0 0
\(313\) 13.4641 0.761036 0.380518 0.924774i \(-0.375746\pi\)
0.380518 + 0.924774i \(0.375746\pi\)
\(314\) − 23.5885i − 1.33117i
\(315\) 0 0
\(316\) 9.46410 0.532397
\(317\) 3.33975i 0.187579i 0.995592 + 0.0937894i \(0.0298980\pi\)
−0.995592 + 0.0937894i \(0.970102\pi\)
\(318\) 0 0
\(319\) 11.6603i 0.652849i
\(320\) − 0.267949i − 0.0149788i
\(321\) 0 0
\(322\) 4.53590 0.252776
\(323\) 2.87564i 0.160005i
\(324\) 0 0
\(325\) 0 0
\(326\) 6.53590 0.361990
\(327\) 0 0
\(328\) 11.3923 0.629035
\(329\) −6.00000 −0.330791
\(330\) 0 0
\(331\) − 20.0000i − 1.09930i −0.835395 0.549650i \(-0.814761\pi\)
0.835395 0.549650i \(-0.185239\pi\)
\(332\) − 10.1962i − 0.559587i
\(333\) 0 0
\(334\) −2.53590 −0.138758
\(335\) −2.98076 −0.162856
\(336\) 0 0
\(337\) −6.85641 −0.373492 −0.186746 0.982408i \(-0.559794\pi\)
−0.186746 + 0.982408i \(0.559794\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0.607695i 0.0329569i
\(341\) 25.8564 1.40020
\(342\) 0 0
\(343\) 9.85641i 0.532196i
\(344\) 7.66025i 0.413013i
\(345\) 0 0
\(346\) − 16.3923i − 0.881256i
\(347\) −8.87564 −0.476470 −0.238235 0.971208i \(-0.576569\pi\)
−0.238235 + 0.971208i \(0.576569\pi\)
\(348\) 0 0
\(349\) − 19.3205i − 1.03420i −0.855924 0.517102i \(-0.827011\pi\)
0.855924 0.517102i \(-0.172989\pi\)
\(350\) −3.60770 −0.192839
\(351\) 0 0
\(352\) 4.73205 0.252219
\(353\) 19.7846i 1.05303i 0.850166 + 0.526514i \(0.176501\pi\)
−0.850166 + 0.526514i \(0.823499\pi\)
\(354\) 0 0
\(355\) −0.339746 −0.0180318
\(356\) − 2.53590i − 0.134402i
\(357\) 0 0
\(358\) 22.0526i 1.16551i
\(359\) − 23.1244i − 1.22046i −0.792226 0.610228i \(-0.791078\pi\)
0.792226 0.610228i \(-0.208922\pi\)
\(360\) 0 0
\(361\) 17.3923 0.915384
\(362\) − 8.80385i − 0.462720i
\(363\) 0 0
\(364\) 0 0
\(365\) 2.60770 0.136493
\(366\) 0 0
\(367\) −14.7321 −0.769007 −0.384503 0.923124i \(-0.625627\pi\)
−0.384503 + 0.923124i \(0.625627\pi\)
\(368\) −6.19615 −0.322997
\(369\) 0 0
\(370\) − 2.80385i − 0.145765i
\(371\) − 0.339746i − 0.0176387i
\(372\) 0 0
\(373\) −10.2679 −0.531654 −0.265827 0.964021i \(-0.585645\pi\)
−0.265827 + 0.964021i \(0.585645\pi\)
\(374\) −10.7321 −0.554941
\(375\) 0 0
\(376\) 8.19615 0.422684
\(377\) 0 0
\(378\) 0 0
\(379\) − 1.46410i − 0.0752058i −0.999293 0.0376029i \(-0.988028\pi\)
0.999293 0.0376029i \(-0.0119722\pi\)
\(380\) −0.339746 −0.0174286
\(381\) 0 0
\(382\) − 6.92820i − 0.354478i
\(383\) 5.46410i 0.279203i 0.990208 + 0.139601i \(0.0445821\pi\)
−0.990208 + 0.139601i \(0.955418\pi\)
\(384\) 0 0
\(385\) 0.928203i 0.0473056i
\(386\) 8.26795 0.420828
\(387\) 0 0
\(388\) − 6.00000i − 0.304604i
\(389\) −29.7846 −1.51014 −0.755070 0.655644i \(-0.772397\pi\)
−0.755070 + 0.655644i \(0.772397\pi\)
\(390\) 0 0
\(391\) 14.0526 0.710668
\(392\) − 6.46410i − 0.326486i
\(393\) 0 0
\(394\) −9.85641 −0.496559
\(395\) − 2.53590i − 0.127595i
\(396\) 0 0
\(397\) − 0.392305i − 0.0196892i −0.999952 0.00984461i \(-0.996866\pi\)
0.999952 0.00984461i \(-0.00313369\pi\)
\(398\) 3.80385i 0.190670i
\(399\) 0 0
\(400\) 4.92820 0.246410
\(401\) − 21.9282i − 1.09504i −0.836792 0.547521i \(-0.815572\pi\)
0.836792 0.547521i \(-0.184428\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 11.9282 0.593450
\(405\) 0 0
\(406\) 1.80385 0.0895235
\(407\) 49.5167 2.45445
\(408\) 0 0
\(409\) − 14.2679i − 0.705505i −0.935717 0.352752i \(-0.885246\pi\)
0.935717 0.352752i \(-0.114754\pi\)
\(410\) − 3.05256i − 0.150755i
\(411\) 0 0
\(412\) −18.7321 −0.922862
\(413\) 5.85641 0.288175
\(414\) 0 0
\(415\) −2.73205 −0.134111
\(416\) 0 0
\(417\) 0 0
\(418\) − 6.00000i − 0.293470i
\(419\) 10.5359 0.514712 0.257356 0.966317i \(-0.417149\pi\)
0.257356 + 0.966317i \(0.417149\pi\)
\(420\) 0 0
\(421\) − 32.7128i − 1.59432i −0.603765 0.797162i \(-0.706333\pi\)
0.603765 0.797162i \(-0.293667\pi\)
\(422\) − 4.39230i − 0.213814i
\(423\) 0 0
\(424\) 0.464102i 0.0225388i
\(425\) −11.1769 −0.542160
\(426\) 0 0
\(427\) 0.875644i 0.0423754i
\(428\) −0.196152 −0.00948139
\(429\) 0 0
\(430\) 2.05256 0.0989832
\(431\) − 11.1244i − 0.535841i −0.963441 0.267921i \(-0.913663\pi\)
0.963441 0.267921i \(-0.0863365\pi\)
\(432\) 0 0
\(433\) 14.8564 0.713953 0.356977 0.934113i \(-0.383808\pi\)
0.356977 + 0.934113i \(0.383808\pi\)
\(434\) − 4.00000i − 0.192006i
\(435\) 0 0
\(436\) − 5.46410i − 0.261683i
\(437\) 7.85641i 0.375823i
\(438\) 0 0
\(439\) 17.6603 0.842878 0.421439 0.906857i \(-0.361525\pi\)
0.421439 + 0.906857i \(0.361525\pi\)
\(440\) − 1.26795i − 0.0604471i
\(441\) 0 0
\(442\) 0 0
\(443\) −36.3923 −1.72905 −0.864525 0.502589i \(-0.832381\pi\)
−0.864525 + 0.502589i \(0.832381\pi\)
\(444\) 0 0
\(445\) −0.679492 −0.0322110
\(446\) −13.0718 −0.618968
\(447\) 0 0
\(448\) − 0.732051i − 0.0345861i
\(449\) 23.3205i 1.10056i 0.834979 + 0.550281i \(0.185480\pi\)
−0.834979 + 0.550281i \(0.814520\pi\)
\(450\) 0 0
\(451\) 53.9090 2.53847
\(452\) −18.6603 −0.877705
\(453\) 0 0
\(454\) 1.80385 0.0846588
\(455\) 0 0
\(456\) 0 0
\(457\) − 18.6603i − 0.872890i −0.899731 0.436445i \(-0.856237\pi\)
0.899731 0.436445i \(-0.143763\pi\)
\(458\) −15.8564 −0.740921
\(459\) 0 0
\(460\) 1.66025i 0.0774097i
\(461\) 25.7321i 1.19846i 0.800577 + 0.599231i \(0.204527\pi\)
−0.800577 + 0.599231i \(0.795473\pi\)
\(462\) 0 0
\(463\) − 28.0526i − 1.30371i −0.758342 0.651856i \(-0.773990\pi\)
0.758342 0.651856i \(-0.226010\pi\)
\(464\) −2.46410 −0.114393
\(465\) 0 0
\(466\) 19.8564i 0.919830i
\(467\) −12.5885 −0.582524 −0.291262 0.956643i \(-0.594075\pi\)
−0.291262 + 0.956643i \(0.594075\pi\)
\(468\) 0 0
\(469\) −8.14359 −0.376036
\(470\) − 2.19615i − 0.101301i
\(471\) 0 0
\(472\) −8.00000 −0.368230
\(473\) 36.2487i 1.66672i
\(474\) 0 0
\(475\) − 6.24871i − 0.286711i
\(476\) 1.66025i 0.0760976i
\(477\) 0 0
\(478\) 9.66025 0.441850
\(479\) − 26.5359i − 1.21246i −0.795291 0.606228i \(-0.792682\pi\)
0.795291 0.606228i \(-0.207318\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 17.5885 0.801132
\(483\) 0 0
\(484\) 11.3923 0.517832
\(485\) −1.60770 −0.0730017
\(486\) 0 0
\(487\) − 21.1244i − 0.957236i −0.878023 0.478618i \(-0.841138\pi\)
0.878023 0.478618i \(-0.158862\pi\)
\(488\) − 1.19615i − 0.0541473i
\(489\) 0 0
\(490\) −1.73205 −0.0782461
\(491\) 5.26795 0.237739 0.118870 0.992910i \(-0.462073\pi\)
0.118870 + 0.992910i \(0.462073\pi\)
\(492\) 0 0
\(493\) 5.58846 0.251691
\(494\) 0 0
\(495\) 0 0
\(496\) 5.46410i 0.245345i
\(497\) −0.928203 −0.0416356
\(498\) 0 0
\(499\) − 32.0000i − 1.43252i −0.697835 0.716258i \(-0.745853\pi\)
0.697835 0.716258i \(-0.254147\pi\)
\(500\) − 2.66025i − 0.118970i
\(501\) 0 0
\(502\) 6.53590i 0.291711i
\(503\) 10.9808 0.489608 0.244804 0.969573i \(-0.421276\pi\)
0.244804 + 0.969573i \(0.421276\pi\)
\(504\) 0 0
\(505\) − 3.19615i − 0.142227i
\(506\) −29.3205 −1.30346
\(507\) 0 0
\(508\) 17.8564 0.792250
\(509\) 10.2679i 0.455119i 0.973764 + 0.227559i \(0.0730746\pi\)
−0.973764 + 0.227559i \(0.926925\pi\)
\(510\) 0 0
\(511\) 7.12436 0.315163
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 26.6603i 1.17593i
\(515\) 5.01924i 0.221174i
\(516\) 0 0
\(517\) 38.7846 1.70575
\(518\) − 7.66025i − 0.336572i
\(519\) 0 0
\(520\) 0 0
\(521\) 17.4449 0.764273 0.382137 0.924106i \(-0.375188\pi\)
0.382137 + 0.924106i \(0.375188\pi\)
\(522\) 0 0
\(523\) 36.4449 1.59362 0.796811 0.604228i \(-0.206518\pi\)
0.796811 + 0.604228i \(0.206518\pi\)
\(524\) 13.4641 0.588182
\(525\) 0 0
\(526\) − 28.0526i − 1.22315i
\(527\) − 12.3923i − 0.539817i
\(528\) 0 0
\(529\) 15.3923 0.669231
\(530\) 0.124356 0.00540166
\(531\) 0 0
\(532\) −0.928203 −0.0402427
\(533\) 0 0
\(534\) 0 0
\(535\) 0.0525589i 0.00227232i
\(536\) 11.1244 0.480499
\(537\) 0 0
\(538\) 1.46410i 0.0631219i
\(539\) − 30.5885i − 1.31754i
\(540\) 0 0
\(541\) 40.3205i 1.73351i 0.498731 + 0.866757i \(0.333800\pi\)
−0.498731 + 0.866757i \(0.666200\pi\)
\(542\) −5.85641 −0.251554
\(543\) 0 0
\(544\) − 2.26795i − 0.0972375i
\(545\) −1.46410 −0.0627152
\(546\) 0 0
\(547\) 6.19615 0.264928 0.132464 0.991188i \(-0.457711\pi\)
0.132464 + 0.991188i \(0.457711\pi\)
\(548\) − 1.92820i − 0.0823688i
\(549\) 0 0
\(550\) 23.3205 0.994390
\(551\) 3.12436i 0.133102i
\(552\) 0 0
\(553\) − 6.92820i − 0.294617i
\(554\) 2.26795i 0.0963559i
\(555\) 0 0
\(556\) 9.85641 0.418005
\(557\) 30.3731i 1.28695i 0.765468 + 0.643474i \(0.222508\pi\)
−0.765468 + 0.643474i \(0.777492\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −0.196152 −0.00828895
\(561\) 0 0
\(562\) −22.3205 −0.941534
\(563\) 21.0718 0.888070 0.444035 0.896009i \(-0.353547\pi\)
0.444035 + 0.896009i \(0.353547\pi\)
\(564\) 0 0
\(565\) 5.00000i 0.210352i
\(566\) − 8.33975i − 0.350546i
\(567\) 0 0
\(568\) 1.26795 0.0532020
\(569\) −38.6410 −1.61992 −0.809958 0.586488i \(-0.800510\pi\)
−0.809958 + 0.586488i \(0.800510\pi\)
\(570\) 0 0
\(571\) 24.0526 1.00657 0.503284 0.864121i \(-0.332125\pi\)
0.503284 + 0.864121i \(0.332125\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) − 8.33975i − 0.348094i
\(575\) −30.5359 −1.27343
\(576\) 0 0
\(577\) − 0.267949i − 0.0111549i −0.999984 0.00557744i \(-0.998225\pi\)
0.999984 0.00557744i \(-0.00177536\pi\)
\(578\) − 11.8564i − 0.493161i
\(579\) 0 0
\(580\) 0.660254i 0.0274156i
\(581\) −7.46410 −0.309663
\(582\) 0 0
\(583\) 2.19615i 0.0909553i
\(584\) −9.73205 −0.402715
\(585\) 0 0
\(586\) −14.5167 −0.599678
\(587\) 16.0000i 0.660391i 0.943913 + 0.330195i \(0.107115\pi\)
−0.943913 + 0.330195i \(0.892885\pi\)
\(588\) 0 0
\(589\) 6.92820 0.285472
\(590\) 2.14359i 0.0882503i
\(591\) 0 0
\(592\) 10.4641i 0.430072i
\(593\) 36.8564i 1.51351i 0.653698 + 0.756756i \(0.273217\pi\)
−0.653698 + 0.756756i \(0.726783\pi\)
\(594\) 0 0
\(595\) 0.444864 0.0182376
\(596\) − 2.80385i − 0.114850i
\(597\) 0 0
\(598\) 0 0
\(599\) 9.46410 0.386693 0.193346 0.981131i \(-0.438066\pi\)
0.193346 + 0.981131i \(0.438066\pi\)
\(600\) 0 0
\(601\) −5.92820 −0.241816 −0.120908 0.992664i \(-0.538581\pi\)
−0.120908 + 0.992664i \(0.538581\pi\)
\(602\) 5.60770 0.228553
\(603\) 0 0
\(604\) − 3.26795i − 0.132971i
\(605\) − 3.05256i − 0.124104i
\(606\) 0 0
\(607\) 0.784610 0.0318463 0.0159232 0.999873i \(-0.494931\pi\)
0.0159232 + 0.999873i \(0.494931\pi\)
\(608\) 1.26795 0.0514221
\(609\) 0 0
\(610\) −0.320508 −0.0129770
\(611\) 0 0
\(612\) 0 0
\(613\) − 11.3923i − 0.460131i −0.973175 0.230065i \(-0.926106\pi\)
0.973175 0.230065i \(-0.0738940\pi\)
\(614\) −8.58846 −0.346602
\(615\) 0 0
\(616\) − 3.46410i − 0.139573i
\(617\) 35.2487i 1.41906i 0.704675 + 0.709530i \(0.251093\pi\)
−0.704675 + 0.709530i \(0.748907\pi\)
\(618\) 0 0
\(619\) 10.5359i 0.423474i 0.977327 + 0.211737i \(0.0679119\pi\)
−0.977327 + 0.211737i \(0.932088\pi\)
\(620\) 1.46410 0.0587997
\(621\) 0 0
\(622\) 15.6603i 0.627919i
\(623\) −1.85641 −0.0743754
\(624\) 0 0
\(625\) 23.9282 0.957128
\(626\) 13.4641i 0.538134i
\(627\) 0 0
\(628\) 23.5885 0.941282
\(629\) − 23.7321i − 0.946259i
\(630\) 0 0
\(631\) 47.7128i 1.89942i 0.313135 + 0.949709i \(0.398621\pi\)
−0.313135 + 0.949709i \(0.601379\pi\)
\(632\) 9.46410i 0.376462i
\(633\) 0 0
\(634\) −3.33975 −0.132638
\(635\) − 4.78461i − 0.189871i
\(636\) 0 0
\(637\) 0 0
\(638\) −11.6603 −0.461634
\(639\) 0 0
\(640\) 0.267949 0.0105916
\(641\) 25.9808 1.02618 0.513089 0.858335i \(-0.328501\pi\)
0.513089 + 0.858335i \(0.328501\pi\)
\(642\) 0 0
\(643\) − 13.8564i − 0.546443i −0.961951 0.273222i \(-0.911911\pi\)
0.961951 0.273222i \(-0.0880892\pi\)
\(644\) 4.53590i 0.178739i
\(645\) 0 0
\(646\) −2.87564 −0.113141
\(647\) 26.2487 1.03194 0.515972 0.856606i \(-0.327431\pi\)
0.515972 + 0.856606i \(0.327431\pi\)
\(648\) 0 0
\(649\) −37.8564 −1.48599
\(650\) 0 0
\(651\) 0 0
\(652\) 6.53590i 0.255966i
\(653\) 10.5359 0.412302 0.206151 0.978520i \(-0.433906\pi\)
0.206151 + 0.978520i \(0.433906\pi\)
\(654\) 0 0
\(655\) − 3.60770i − 0.140964i
\(656\) 11.3923i 0.444795i
\(657\) 0 0
\(658\) − 6.00000i − 0.233904i
\(659\) −38.2487 −1.48996 −0.744979 0.667088i \(-0.767541\pi\)
−0.744979 + 0.667088i \(0.767541\pi\)
\(660\) 0 0
\(661\) − 9.39230i − 0.365318i −0.983176 0.182659i \(-0.941530\pi\)
0.983176 0.182659i \(-0.0584705\pi\)
\(662\) 20.0000 0.777322
\(663\) 0 0
\(664\) 10.1962 0.395687
\(665\) 0.248711i 0.00964461i
\(666\) 0 0
\(667\) 15.2679 0.591177
\(668\) − 2.53590i − 0.0981169i
\(669\) 0 0
\(670\) − 2.98076i − 0.115157i
\(671\) − 5.66025i − 0.218512i
\(672\) 0 0
\(673\) −14.0718 −0.542428 −0.271214 0.962519i \(-0.587425\pi\)
−0.271214 + 0.962519i \(0.587425\pi\)
\(674\) − 6.85641i − 0.264099i
\(675\) 0 0
\(676\) 0 0
\(677\) 38.5359 1.48105 0.740527 0.672026i \(-0.234576\pi\)
0.740527 + 0.672026i \(0.234576\pi\)
\(678\) 0 0
\(679\) −4.39230 −0.168561
\(680\) −0.607695 −0.0233040
\(681\) 0 0
\(682\) 25.8564i 0.990093i
\(683\) 37.8564i 1.44854i 0.689519 + 0.724268i \(0.257822\pi\)
−0.689519 + 0.724268i \(0.742178\pi\)
\(684\) 0 0
\(685\) −0.516660 −0.0197406
\(686\) −9.85641 −0.376319
\(687\) 0 0
\(688\) −7.66025 −0.292044
\(689\) 0 0
\(690\) 0 0
\(691\) − 26.3397i − 1.00201i −0.865444 0.501006i \(-0.832964\pi\)
0.865444 0.501006i \(-0.167036\pi\)
\(692\) 16.3923 0.623142
\(693\) 0 0
\(694\) − 8.87564i − 0.336915i
\(695\) − 2.64102i − 0.100179i
\(696\) 0 0
\(697\) − 25.8372i − 0.978653i
\(698\) 19.3205 0.731292
\(699\) 0 0
\(700\) − 3.60770i − 0.136358i
\(701\) 31.3205 1.18296 0.591480 0.806320i \(-0.298544\pi\)
0.591480 + 0.806320i \(0.298544\pi\)
\(702\) 0 0
\(703\) 13.2679 0.500410
\(704\) 4.73205i 0.178346i
\(705\) 0 0
\(706\) −19.7846 −0.744604
\(707\) − 8.73205i − 0.328403i
\(708\) 0 0
\(709\) 40.8564i 1.53439i 0.641411 + 0.767197i \(0.278349\pi\)
−0.641411 + 0.767197i \(0.721651\pi\)
\(710\) − 0.339746i − 0.0127504i
\(711\) 0 0
\(712\) 2.53590 0.0950368
\(713\) − 33.8564i − 1.26793i
\(714\) 0 0
\(715\) 0 0
\(716\) −22.0526 −0.824143
\(717\) 0 0
\(718\) 23.1244 0.862993
\(719\) −22.5359 −0.840447 −0.420224 0.907421i \(-0.638048\pi\)
−0.420224 + 0.907421i \(0.638048\pi\)
\(720\) 0 0
\(721\) 13.7128i 0.510692i
\(722\) 17.3923i 0.647275i
\(723\) 0 0
\(724\) 8.80385 0.327192
\(725\) −12.1436 −0.451002
\(726\) 0 0
\(727\) −20.9808 −0.778133 −0.389067 0.921210i \(-0.627202\pi\)
−0.389067 + 0.921210i \(0.627202\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 2.60770i 0.0965151i
\(731\) 17.3731 0.642566
\(732\) 0 0
\(733\) − 19.0000i − 0.701781i −0.936416 0.350891i \(-0.885879\pi\)
0.936416 0.350891i \(-0.114121\pi\)
\(734\) − 14.7321i − 0.543770i
\(735\) 0 0
\(736\) − 6.19615i − 0.228393i
\(737\) 52.6410 1.93906
\(738\) 0 0
\(739\) − 10.9282i − 0.402000i −0.979591 0.201000i \(-0.935581\pi\)
0.979591 0.201000i \(-0.0644192\pi\)
\(740\) 2.80385 0.103071
\(741\) 0 0
\(742\) 0.339746 0.0124725
\(743\) − 27.6077i − 1.01283i −0.862290 0.506414i \(-0.830971\pi\)
0.862290 0.506414i \(-0.169029\pi\)
\(744\) 0 0
\(745\) −0.751289 −0.0275251
\(746\) − 10.2679i − 0.375936i
\(747\) 0 0
\(748\) − 10.7321i − 0.392403i
\(749\) 0.143594i 0.00524679i
\(750\) 0 0
\(751\) −15.9090 −0.580526 −0.290263 0.956947i \(-0.593743\pi\)
−0.290263 + 0.956947i \(0.593743\pi\)
\(752\) 8.19615i 0.298883i
\(753\) 0 0
\(754\) 0 0
\(755\) −0.875644 −0.0318680
\(756\) 0 0
\(757\) 7.07180 0.257029 0.128514 0.991708i \(-0.458979\pi\)
0.128514 + 0.991708i \(0.458979\pi\)
\(758\) 1.46410 0.0531786
\(759\) 0 0
\(760\) − 0.339746i − 0.0123239i
\(761\) 23.3205i 0.845368i 0.906277 + 0.422684i \(0.138912\pi\)
−0.906277 + 0.422684i \(0.861088\pi\)
\(762\) 0 0
\(763\) −4.00000 −0.144810
\(764\) 6.92820 0.250654
\(765\) 0 0
\(766\) −5.46410 −0.197426
\(767\) 0 0
\(768\) 0 0
\(769\) 16.1436i 0.582153i 0.956700 + 0.291076i \(0.0940134\pi\)
−0.956700 + 0.291076i \(0.905987\pi\)
\(770\) −0.928203 −0.0334501
\(771\) 0 0
\(772\) 8.26795i 0.297570i
\(773\) − 35.0718i − 1.26144i −0.776009 0.630722i \(-0.782759\pi\)
0.776009 0.630722i \(-0.217241\pi\)
\(774\) 0 0
\(775\) 26.9282i 0.967290i
\(776\) 6.00000 0.215387
\(777\) 0 0
\(778\) − 29.7846i − 1.06783i
\(779\) 14.4449 0.517541
\(780\) 0 0
\(781\) 6.00000 0.214697
\(782\) 14.0526i 0.502518i
\(783\) 0 0
\(784\) 6.46410 0.230861
\(785\) − 6.32051i − 0.225589i
\(786\) 0 0
\(787\) 39.3205i 1.40162i 0.713346 + 0.700812i \(0.247179\pi\)
−0.713346 + 0.700812i \(0.752821\pi\)
\(788\) − 9.85641i − 0.351120i
\(789\) 0 0
\(790\) 2.53590 0.0902232
\(791\) 13.6603i 0.485703i
\(792\) 0 0
\(793\) 0 0
\(794\) 0.392305 0.0139224
\(795\) 0 0
\(796\) −3.80385 −0.134824
\(797\) −34.0000 −1.20434 −0.602171 0.798367i \(-0.705697\pi\)
−0.602171 + 0.798367i \(0.705697\pi\)
\(798\) 0 0
\(799\) − 18.5885i − 0.657612i
\(800\) 4.92820i 0.174238i
\(801\) 0 0
\(802\) 21.9282 0.774312
\(803\) −46.0526 −1.62516
\(804\) 0 0
\(805\) 1.21539 0.0428369
\(806\) 0 0
\(807\) 0 0
\(808\) 11.9282i 0.419633i
\(809\) 22.4115 0.787948 0.393974 0.919122i \(-0.371100\pi\)
0.393974 + 0.919122i \(0.371100\pi\)
\(810\) 0 0
\(811\) 45.1769i 1.58638i 0.608977 + 0.793188i \(0.291580\pi\)
−0.608977 + 0.793188i \(0.708420\pi\)
\(812\) 1.80385i 0.0633026i
\(813\) 0 0
\(814\) 49.5167i 1.73556i
\(815\) 1.75129 0.0613450
\(816\) 0 0
\(817\) 9.71281i 0.339808i
\(818\) 14.2679 0.498867
\(819\) 0 0
\(820\) 3.05256 0.106600
\(821\) 12.9282i 0.451197i 0.974220 + 0.225599i \(0.0724338\pi\)
−0.974220 + 0.225599i \(0.927566\pi\)
\(822\) 0 0
\(823\) 41.5692 1.44901 0.724506 0.689269i \(-0.242068\pi\)
0.724506 + 0.689269i \(0.242068\pi\)
\(824\) − 18.7321i − 0.652562i
\(825\) 0 0
\(826\) 5.85641i 0.203770i
\(827\) − 33.4641i − 1.16366i −0.813310 0.581830i \(-0.802337\pi\)
0.813310 0.581830i \(-0.197663\pi\)
\(828\) 0 0
\(829\) −12.1244 −0.421096 −0.210548 0.977583i \(-0.567525\pi\)
−0.210548 + 0.977583i \(0.567525\pi\)
\(830\) − 2.73205i − 0.0948309i
\(831\) 0 0
\(832\) 0 0
\(833\) −14.6603 −0.507948
\(834\) 0 0
\(835\) −0.679492 −0.0235148
\(836\) 6.00000 0.207514
\(837\) 0 0
\(838\) 10.5359i 0.363957i
\(839\) − 14.1436i − 0.488291i −0.969739 0.244146i \(-0.921493\pi\)
0.969739 0.244146i \(-0.0785075\pi\)
\(840\) 0 0
\(841\) −22.9282 −0.790628
\(842\) 32.7128 1.12736
\(843\) 0 0
\(844\) 4.39230 0.151189
\(845\) 0 0
\(846\) 0 0
\(847\) − 8.33975i − 0.286557i
\(848\) −0.464102 −0.0159373
\(849\) 0 0
\(850\) − 11.1769i − 0.383365i
\(851\) − 64.8372i − 2.22259i
\(852\) 0 0
\(853\) 8.17691i 0.279972i 0.990153 + 0.139986i \(0.0447058\pi\)
−0.990153 + 0.139986i \(0.955294\pi\)
\(854\) −0.875644 −0.0299639
\(855\) 0 0
\(856\) − 0.196152i − 0.00670435i
\(857\) −19.4449 −0.664224 −0.332112 0.943240i \(-0.607761\pi\)
−0.332112 + 0.943240i \(0.607761\pi\)
\(858\) 0 0
\(859\) −22.8756 −0.780507 −0.390253 0.920707i \(-0.627613\pi\)
−0.390253 + 0.920707i \(0.627613\pi\)
\(860\) 2.05256i 0.0699917i
\(861\) 0 0
\(862\) 11.1244 0.378897
\(863\) 7.12436i 0.242516i 0.992621 + 0.121258i \(0.0386928\pi\)
−0.992621 + 0.121258i \(0.961307\pi\)
\(864\) 0 0
\(865\) − 4.39230i − 0.149343i
\(866\) 14.8564i 0.504841i
\(867\) 0 0
\(868\) 4.00000 0.135769
\(869\) 44.7846i 1.51921i
\(870\) 0 0
\(871\) 0 0
\(872\) 5.46410 0.185038
\(873\) 0 0
\(874\) −7.85641 −0.265747
\(875\) −1.94744 −0.0658355
\(876\) 0 0
\(877\) − 10.0718i − 0.340100i −0.985435 0.170050i \(-0.945607\pi\)
0.985435 0.170050i \(-0.0543930\pi\)
\(878\) 17.6603i 0.596005i
\(879\) 0 0
\(880\) 1.26795 0.0427426
\(881\) 51.8372 1.74644 0.873219 0.487327i \(-0.162028\pi\)
0.873219 + 0.487327i \(0.162028\pi\)
\(882\) 0 0
\(883\) −29.0718 −0.978344 −0.489172 0.872187i \(-0.662701\pi\)
−0.489172 + 0.872187i \(0.662701\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) − 36.3923i − 1.22262i
\(887\) −10.1436 −0.340589 −0.170294 0.985393i \(-0.554472\pi\)
−0.170294 + 0.985393i \(0.554472\pi\)
\(888\) 0 0
\(889\) − 13.0718i − 0.438414i
\(890\) − 0.679492i − 0.0227766i
\(891\) 0 0
\(892\) − 13.0718i − 0.437676i
\(893\) 10.3923 0.347765
\(894\) 0 0
\(895\) 5.90897i 0.197515i
\(896\) 0.732051 0.0244561
\(897\) 0 0
\(898\) −23.3205 −0.778215
\(899\) − 13.4641i − 0.449053i
\(900\) 0 0
\(901\) 1.05256 0.0350658
\(902\) 53.9090i 1.79497i
\(903\) 0 0
\(904\) − 18.6603i − 0.620631i
\(905\) − 2.35898i − 0.0784153i
\(906\) 0 0
\(907\) −15.6077 −0.518245 −0.259123 0.965844i \(-0.583433\pi\)
−0.259123 + 0.965844i \(0.583433\pi\)
\(908\) 1.80385i 0.0598628i
\(909\) 0 0
\(910\) 0 0
\(911\) 9.46410 0.313560 0.156780 0.987634i \(-0.449889\pi\)
0.156780 + 0.987634i \(0.449889\pi\)
\(912\) 0 0
\(913\) 48.2487 1.59680
\(914\) 18.6603 0.617226
\(915\) 0 0
\(916\) − 15.8564i − 0.523910i
\(917\) − 9.85641i − 0.325487i
\(918\) 0 0
\(919\) −57.9615 −1.91197 −0.955987 0.293409i \(-0.905210\pi\)
−0.955987 + 0.293409i \(0.905210\pi\)
\(920\) −1.66025 −0.0547370
\(921\) 0 0
\(922\) −25.7321 −0.847440
\(923\) 0 0
\(924\) 0 0
\(925\) 51.5692i 1.69559i
\(926\) 28.0526 0.921864
\(927\) 0 0
\(928\) − 2.46410i − 0.0808881i
\(929\) 9.24871i 0.303440i 0.988423 + 0.151720i \(0.0484813\pi\)
−0.988423 + 0.151720i \(0.951519\pi\)
\(930\) 0 0
\(931\) − 8.19615i − 0.268618i
\(932\) −19.8564 −0.650418
\(933\) 0 0
\(934\) − 12.5885i − 0.411907i
\(935\) −2.87564 −0.0940436
\(936\) 0 0
\(937\) 43.2487 1.41287 0.706437 0.707776i \(-0.250301\pi\)
0.706437 + 0.707776i \(0.250301\pi\)
\(938\) − 8.14359i − 0.265898i
\(939\) 0 0
\(940\) 2.19615 0.0716306
\(941\) − 56.6410i − 1.84644i −0.384267 0.923222i \(-0.625546\pi\)
0.384267 0.923222i \(-0.374454\pi\)
\(942\) 0 0
\(943\) − 70.5885i − 2.29868i
\(944\) − 8.00000i − 0.260378i
\(945\) 0 0
\(946\) −36.2487 −1.17855
\(947\) − 34.9282i − 1.13501i −0.823369 0.567507i \(-0.807908\pi\)
0.823369 0.567507i \(-0.192092\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 6.24871 0.202735
\(951\) 0 0
\(952\) −1.66025 −0.0538091
\(953\) −41.5692 −1.34656 −0.673280 0.739388i \(-0.735115\pi\)
−0.673280 + 0.739388i \(0.735115\pi\)
\(954\) 0 0
\(955\) − 1.85641i − 0.0600719i
\(956\) 9.66025i 0.312435i
\(957\) 0 0
\(958\) 26.5359 0.857336
\(959\) −1.41154 −0.0455811
\(960\) 0 0
\(961\) 1.14359 0.0368901
\(962\) 0 0
\(963\) 0 0
\(964\) 17.5885i 0.566486i
\(965\) 2.21539 0.0713159
\(966\) 0 0
\(967\) 18.8756i 0.607000i 0.952831 + 0.303500i \(0.0981552\pi\)
−0.952831 + 0.303500i \(0.901845\pi\)
\(968\) 11.3923i 0.366163i
\(969\) 0 0
\(970\) − 1.60770i − 0.0516200i
\(971\) 18.2487 0.585629 0.292815 0.956169i \(-0.405408\pi\)
0.292815 + 0.956169i \(0.405408\pi\)
\(972\) 0 0
\(973\) − 7.21539i − 0.231315i
\(974\) 21.1244 0.676868
\(975\) 0 0
\(976\) 1.19615 0.0382879
\(977\) 32.0718i 1.02607i 0.858368 + 0.513034i \(0.171478\pi\)
−0.858368 + 0.513034i \(0.828522\pi\)
\(978\) 0 0
\(979\) 12.0000 0.383522
\(980\) − 1.73205i − 0.0553283i
\(981\) 0 0
\(982\) 5.26795i 0.168107i
\(983\) 20.7846i 0.662926i 0.943468 + 0.331463i \(0.107542\pi\)
−0.943468 + 0.331463i \(0.892458\pi\)
\(984\) 0 0
\(985\) −2.64102 −0.0841498
\(986\) 5.58846i 0.177973i
\(987\) 0 0
\(988\) 0 0
\(989\) 47.4641 1.50927
\(990\) 0 0
\(991\) −8.58846 −0.272821 −0.136411 0.990652i \(-0.543557\pi\)
−0.136411 + 0.990652i \(0.543557\pi\)
\(992\) −5.46410 −0.173485
\(993\) 0 0
\(994\) − 0.928203i − 0.0294408i
\(995\) 1.01924i 0.0323120i
\(996\) 0 0
\(997\) 38.6603 1.22438 0.612191 0.790710i \(-0.290288\pi\)
0.612191 + 0.790710i \(0.290288\pi\)
\(998\) 32.0000 1.01294
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3042.2.b.i.1351.3 4
3.2 odd 2 1014.2.b.e.337.2 4
13.3 even 3 234.2.l.c.199.1 4
13.4 even 6 234.2.l.c.127.1 4
13.5 odd 4 3042.2.a.y.1.1 2
13.8 odd 4 3042.2.a.p.1.2 2
13.12 even 2 inner 3042.2.b.i.1351.2 4
39.2 even 12 1014.2.e.i.529.2 4
39.5 even 4 1014.2.a.i.1.2 2
39.8 even 4 1014.2.a.k.1.1 2
39.11 even 12 1014.2.e.g.529.1 4
39.17 odd 6 78.2.i.a.49.2 yes 4
39.20 even 12 1014.2.e.g.991.1 4
39.23 odd 6 1014.2.i.a.823.1 4
39.29 odd 6 78.2.i.a.43.2 4
39.32 even 12 1014.2.e.i.991.2 4
39.35 odd 6 1014.2.i.a.361.1 4
39.38 odd 2 1014.2.b.e.337.3 4
52.3 odd 6 1872.2.by.h.433.2 4
52.43 odd 6 1872.2.by.h.1297.1 4
156.47 odd 4 8112.2.a.bp.1.1 2
156.83 odd 4 8112.2.a.bj.1.2 2
156.95 even 6 624.2.bv.e.49.2 4
156.107 even 6 624.2.bv.e.433.1 4
195.17 even 12 1950.2.y.g.49.1 4
195.29 odd 6 1950.2.bc.d.901.1 4
195.68 even 12 1950.2.y.g.199.1 4
195.107 even 12 1950.2.y.b.199.2 4
195.134 odd 6 1950.2.bc.d.751.1 4
195.173 even 12 1950.2.y.b.49.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.2.i.a.43.2 4 39.29 odd 6
78.2.i.a.49.2 yes 4 39.17 odd 6
234.2.l.c.127.1 4 13.4 even 6
234.2.l.c.199.1 4 13.3 even 3
624.2.bv.e.49.2 4 156.95 even 6
624.2.bv.e.433.1 4 156.107 even 6
1014.2.a.i.1.2 2 39.5 even 4
1014.2.a.k.1.1 2 39.8 even 4
1014.2.b.e.337.2 4 3.2 odd 2
1014.2.b.e.337.3 4 39.38 odd 2
1014.2.e.g.529.1 4 39.11 even 12
1014.2.e.g.991.1 4 39.20 even 12
1014.2.e.i.529.2 4 39.2 even 12
1014.2.e.i.991.2 4 39.32 even 12
1014.2.i.a.361.1 4 39.35 odd 6
1014.2.i.a.823.1 4 39.23 odd 6
1872.2.by.h.433.2 4 52.3 odd 6
1872.2.by.h.1297.1 4 52.43 odd 6
1950.2.y.b.49.2 4 195.173 even 12
1950.2.y.b.199.2 4 195.107 even 12
1950.2.y.g.49.1 4 195.17 even 12
1950.2.y.g.199.1 4 195.68 even 12
1950.2.bc.d.751.1 4 195.134 odd 6
1950.2.bc.d.901.1 4 195.29 odd 6
3042.2.a.p.1.2 2 13.8 odd 4
3042.2.a.y.1.1 2 13.5 odd 4
3042.2.b.i.1351.2 4 13.12 even 2 inner
3042.2.b.i.1351.3 4 1.1 even 1 trivial
8112.2.a.bj.1.2 2 156.83 odd 4
8112.2.a.bp.1.1 2 156.47 odd 4