L(s) = 1 | + (−1.30 + 0.951i)2-s + (0.500 − 1.53i)4-s + (−0.809 − 0.587i)5-s + (−0.309 + 0.951i)7-s + (0.309 + 0.951i)8-s + 1.61·10-s + (−0.951 − 0.309i)11-s + (−0.587 − 0.809i)13-s + (−0.499 − 1.53i)14-s + (0.951 − 1.30i)17-s + (−1.30 + 0.951i)20-s + (1.53 − 0.499i)22-s + 1.61i·23-s + (1.53 + 0.5i)26-s + (1.30 + 0.951i)28-s + (−0.587 − 0.190i)29-s + ⋯ |
L(s) = 1 | + (−1.30 + 0.951i)2-s + (0.500 − 1.53i)4-s + (−0.809 − 0.587i)5-s + (−0.309 + 0.951i)7-s + (0.309 + 0.951i)8-s + 1.61·10-s + (−0.951 − 0.309i)11-s + (−0.587 − 0.809i)13-s + (−0.499 − 1.53i)14-s + (0.951 − 1.30i)17-s + (−1.30 + 0.951i)20-s + (1.53 − 0.499i)22-s + 1.61i·23-s + (1.53 + 0.5i)26-s + (1.30 + 0.951i)28-s + (−0.587 − 0.190i)29-s + ⋯ |
Λ(s)=(=(3069s/2ΓC(s)L(s)(−0.794−0.606i)Λ(1−s)
Λ(s)=(=(3069s/2ΓC(s)L(s)(−0.794−0.606i)Λ(1−s)
Degree: |
2 |
Conductor: |
3069
= 32⋅11⋅31
|
Sign: |
−0.794−0.606i
|
Analytic conductor: |
1.53163 |
Root analytic conductor: |
1.23759 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3069(2665,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3069, ( :0), −0.794−0.606i)
|
Particular Values
L(21) |
≈ |
0.2535542133 |
L(21) |
≈ |
0.2535542133 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | 1+(0.951+0.309i)T |
| 31 | 1+(−0.587−0.809i)T |
good | 2 | 1+(1.30−0.951i)T+(0.309−0.951i)T2 |
| 5 | 1+(0.809+0.587i)T+(0.309+0.951i)T2 |
| 7 | 1+(0.309−0.951i)T+(−0.809−0.587i)T2 |
| 13 | 1+(0.587+0.809i)T+(−0.309+0.951i)T2 |
| 17 | 1+(−0.951+1.30i)T+(−0.309−0.951i)T2 |
| 19 | 1+(−0.809+0.587i)T2 |
| 23 | 1−1.61iT−T2 |
| 29 | 1+(0.587+0.190i)T+(0.809+0.587i)T2 |
| 37 | 1+(0.951+0.309i)T+(0.809+0.587i)T2 |
| 41 | 1+(−0.809+0.587i)T2 |
| 43 | 1−0.618iT−T2 |
| 47 | 1+(−0.5−1.53i)T+(−0.809+0.587i)T2 |
| 53 | 1+(−0.309+0.951i)T2 |
| 59 | 1+(−0.809−0.587i)T2 |
| 61 | 1+(−0.587+0.809i)T+(−0.309−0.951i)T2 |
| 67 | 1+T+T2 |
| 71 | 1+(−0.809−0.587i)T+(0.309+0.951i)T2 |
| 73 | 1+(−0.951−0.309i)T+(0.809+0.587i)T2 |
| 79 | 1+(0.587+0.809i)T+(−0.309+0.951i)T2 |
| 83 | 1+(−0.587+0.809i)T+(−0.309−0.951i)T2 |
| 89 | 1−iT−T2 |
| 97 | 1+(0.809−0.587i)T+(0.309−0.951i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.119272227960825363721981390616, −8.291197925475405828141452697941, −7.69453705015340843358470588557, −7.45120052596838557540029526650, −6.29150795954412143297019945982, −5.37444358142129514049070959033, −5.13459683596078091549899443059, −3.52390698900113861079359532691, −2.61341267656107250828460673687, −0.993886732549319956964329871475,
0.29867857044336440412353208377, 1.77767250908650464485496770269, 2.71215713454088288102479133771, 3.62299006049498412562529434817, 4.27224228421158183220064988086, 5.55597845420818159164000756557, 6.91881896523529384017115004287, 7.22431981359189494174172147282, 8.106437268297738964955598291871, 8.468056003091619911953639753117