L(s) = 1 | + (−1.30 + 0.951i)2-s + (0.500 − 1.53i)4-s + (−0.809 − 0.587i)5-s + (−0.309 + 0.951i)7-s + (0.309 + 0.951i)8-s + 1.61·10-s + (−0.951 − 0.309i)11-s + (−0.587 − 0.809i)13-s + (−0.499 − 1.53i)14-s + (0.951 − 1.30i)17-s + (−1.30 + 0.951i)20-s + (1.53 − 0.499i)22-s + 1.61i·23-s + (1.53 + 0.5i)26-s + (1.30 + 0.951i)28-s + (−0.587 − 0.190i)29-s + ⋯ |
L(s) = 1 | + (−1.30 + 0.951i)2-s + (0.500 − 1.53i)4-s + (−0.809 − 0.587i)5-s + (−0.309 + 0.951i)7-s + (0.309 + 0.951i)8-s + 1.61·10-s + (−0.951 − 0.309i)11-s + (−0.587 − 0.809i)13-s + (−0.499 − 1.53i)14-s + (0.951 − 1.30i)17-s + (−1.30 + 0.951i)20-s + (1.53 − 0.499i)22-s + 1.61i·23-s + (1.53 + 0.5i)26-s + (1.30 + 0.951i)28-s + (−0.587 − 0.190i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3069 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.794 - 0.606i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3069 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.794 - 0.606i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2535542133\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2535542133\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 + (0.951 + 0.309i)T \) |
| 31 | \( 1 + (-0.587 - 0.809i)T \) |
good | 2 | \( 1 + (1.30 - 0.951i)T + (0.309 - 0.951i)T^{2} \) |
| 5 | \( 1 + (0.809 + 0.587i)T + (0.309 + 0.951i)T^{2} \) |
| 7 | \( 1 + (0.309 - 0.951i)T + (-0.809 - 0.587i)T^{2} \) |
| 13 | \( 1 + (0.587 + 0.809i)T + (-0.309 + 0.951i)T^{2} \) |
| 17 | \( 1 + (-0.951 + 1.30i)T + (-0.309 - 0.951i)T^{2} \) |
| 19 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 23 | \( 1 - 1.61iT - T^{2} \) |
| 29 | \( 1 + (0.587 + 0.190i)T + (0.809 + 0.587i)T^{2} \) |
| 37 | \( 1 + (0.951 + 0.309i)T + (0.809 + 0.587i)T^{2} \) |
| 41 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 43 | \( 1 - 0.618iT - T^{2} \) |
| 47 | \( 1 + (-0.5 - 1.53i)T + (-0.809 + 0.587i)T^{2} \) |
| 53 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 59 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 61 | \( 1 + (-0.587 + 0.809i)T + (-0.309 - 0.951i)T^{2} \) |
| 67 | \( 1 + T + T^{2} \) |
| 71 | \( 1 + (-0.809 - 0.587i)T + (0.309 + 0.951i)T^{2} \) |
| 73 | \( 1 + (-0.951 - 0.309i)T + (0.809 + 0.587i)T^{2} \) |
| 79 | \( 1 + (0.587 + 0.809i)T + (-0.309 + 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.587 + 0.809i)T + (-0.309 - 0.951i)T^{2} \) |
| 89 | \( 1 - iT - T^{2} \) |
| 97 | \( 1 + (0.809 - 0.587i)T + (0.309 - 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.119272227960825363721981390616, −8.291197925475405828141452697941, −7.69453705015340843358470588557, −7.45120052596838557540029526650, −6.29150795954412143297019945982, −5.37444358142129514049070959033, −5.13459683596078091549899443059, −3.52390698900113861079359532691, −2.61341267656107250828460673687, −0.993886732549319956964329871475,
0.29867857044336440412353208377, 1.77767250908650464485496770269, 2.71215713454088288102479133771, 3.62299006049498412562529434817, 4.27224228421158183220064988086, 5.55597845420818159164000756557, 6.91881896523529384017115004287, 7.22431981359189494174172147282, 8.106437268297738964955598291871, 8.468056003091619911953639753117