Properties

Label 3069.1.cd.a
Level 30693069
Weight 11
Character orbit 3069.cd
Analytic conductor 1.5321.532
Analytic rank 00
Dimension 88
Projective image A5A_{5}
CM/RM no
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3069,1,Mod(433,3069)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3069, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 2, 5]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3069.433");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3069=321131 3069 = 3^{2} \cdot 11 \cdot 31
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3069.cd (of order 1010, degree 44, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.531630523771.53163052377
Analytic rank: 00
Dimension: 88
Relative dimension: 22 over Q(ζ10)\Q(\zeta_{10})
Coefficient field: Q(ζ20)\Q(\zeta_{20})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x6+x4x2+1 x^{8} - x^{6} + x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: A5A_{5}
Projective field: Galois closure of 5.1.126630009.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+(ζ2021)q2+(ζ204ζ202+1)q4+ζ204q5+ζ202q7+(ζ206ζ204+1)q8+(ζ206ζ204)q10+ζ206q97+O(q100) q + (\zeta_{20}^{2} - 1) q^{2} + (\zeta_{20}^{4} - \zeta_{20}^{2} + 1) q^{4} + \zeta_{20}^{4} q^{5} + \zeta_{20}^{2} q^{7} + (\zeta_{20}^{6} - \zeta_{20}^{4} + \cdots - 1) q^{8} + (\zeta_{20}^{6} - \zeta_{20}^{4}) q^{10}+ \cdots - \zeta_{20}^{6} q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q6q2+4q42q5+2q72q8+4q104q146q20+6q288q32+2q352q40+4q478q56+6q648q674q70+2q718q94+2q97+O(q100) 8 q - 6 q^{2} + 4 q^{4} - 2 q^{5} + 2 q^{7} - 2 q^{8} + 4 q^{10} - 4 q^{14} - 6 q^{20} + 6 q^{28} - 8 q^{32} + 2 q^{35} - 2 q^{40} + 4 q^{47} - 8 q^{56} + 6 q^{64} - 8 q^{67} - 4 q^{70} + 2 q^{71} - 8 q^{94}+ \cdots - 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3069Z)×\left(\mathbb{Z}/3069\mathbb{Z}\right)^\times.

nn 838838 20802080 27292729
χ(n)\chi(n) ζ202-\zeta_{20}^{2} 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
433.1
0.587785 0.809017i
−0.587785 + 0.809017i
−0.951057 + 0.309017i
0.951057 0.309017i
−0.951057 0.309017i
0.951057 + 0.309017i
0.587785 + 0.809017i
−0.587785 0.809017i
−1.30902 0.951057i 0 0.500000 + 1.53884i −0.809017 + 0.587785i 0 −0.309017 0.951057i 0.309017 0.951057i 0 1.61803
433.2 −1.30902 0.951057i 0 0.500000 + 1.53884i −0.809017 + 0.587785i 0 −0.309017 0.951057i 0.309017 0.951057i 0 1.61803
1270.1 −0.190983 0.587785i 0 0.500000 0.363271i 0.309017 0.951057i 0 0.809017 0.587785i −0.809017 0.587785i 0 −0.618034
1270.2 −0.190983 0.587785i 0 0.500000 0.363271i 0.309017 0.951057i 0 0.809017 0.587785i −0.809017 0.587785i 0 −0.618034
1549.1 −0.190983 + 0.587785i 0 0.500000 + 0.363271i 0.309017 + 0.951057i 0 0.809017 + 0.587785i −0.809017 + 0.587785i 0 −0.618034
1549.2 −0.190983 + 0.587785i 0 0.500000 + 0.363271i 0.309017 + 0.951057i 0 0.809017 + 0.587785i −0.809017 + 0.587785i 0 −0.618034
2665.1 −1.30902 + 0.951057i 0 0.500000 1.53884i −0.809017 0.587785i 0 −0.309017 + 0.951057i 0.309017 + 0.951057i 0 1.61803
2665.2 −1.30902 + 0.951057i 0 0.500000 1.53884i −0.809017 0.587785i 0 −0.309017 + 0.951057i 0.309017 + 0.951057i 0 1.61803
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 433.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.c even 5 1 inner
31.b odd 2 1 inner
341.t odd 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3069.1.cd.a 8
3.b odd 2 1 3069.1.cd.b yes 8
11.c even 5 1 inner 3069.1.cd.a 8
31.b odd 2 1 inner 3069.1.cd.a 8
33.h odd 10 1 3069.1.cd.b yes 8
93.c even 2 1 3069.1.cd.b yes 8
341.t odd 10 1 inner 3069.1.cd.a 8
1023.cg even 10 1 3069.1.cd.b yes 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3069.1.cd.a 8 1.a even 1 1 trivial
3069.1.cd.a 8 11.c even 5 1 inner
3069.1.cd.a 8 31.b odd 2 1 inner
3069.1.cd.a 8 341.t odd 10 1 inner
3069.1.cd.b yes 8 3.b odd 2 1
3069.1.cd.b yes 8 33.h odd 10 1
3069.1.cd.b yes 8 93.c even 2 1
3069.1.cd.b yes 8 1023.cg even 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T24+3T23+4T22+2T2+1 T_{2}^{4} + 3T_{2}^{3} + 4T_{2}^{2} + 2T_{2} + 1 acting on S1new(3069,[χ])S_{1}^{\mathrm{new}}(3069, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T4+3T3+4T2++1)2 (T^{4} + 3 T^{3} + 4 T^{2} + \cdots + 1)^{2} Copy content Toggle raw display
33 T8 T^{8} Copy content Toggle raw display
55 (T4+T3+T2++1)2 (T^{4} + T^{3} + T^{2} + \cdots + 1)^{2} Copy content Toggle raw display
77 (T4T3+T2++1)2 (T^{4} - T^{3} + T^{2} + \cdots + 1)^{2} Copy content Toggle raw display
1111 T8T6+T4++1 T^{8} - T^{6} + T^{4} + \cdots + 1 Copy content Toggle raw display
1313 T8T6+T4++1 T^{8} - T^{6} + T^{4} + \cdots + 1 Copy content Toggle raw display
1717 T8+T6+6T4++1 T^{8} + T^{6} + 6 T^{4} + \cdots + 1 Copy content Toggle raw display
1919 T8 T^{8} Copy content Toggle raw display
2323 (T4+3T2+1)2 (T^{4} + 3 T^{2} + 1)^{2} Copy content Toggle raw display
2929 T8+T6+6T4++1 T^{8} + T^{6} + 6 T^{4} + \cdots + 1 Copy content Toggle raw display
3131 T8T6+T4++1 T^{8} - T^{6} + T^{4} + \cdots + 1 Copy content Toggle raw display
3737 T8T6+T4++1 T^{8} - T^{6} + T^{4} + \cdots + 1 Copy content Toggle raw display
4141 T8 T^{8} Copy content Toggle raw display
4343 (T4+3T2+1)2 (T^{4} + 3 T^{2} + 1)^{2} Copy content Toggle raw display
4747 (T42T3+4T2++1)2 (T^{4} - 2 T^{3} + 4 T^{2} + \cdots + 1)^{2} Copy content Toggle raw display
5353 T8 T^{8} Copy content Toggle raw display
5959 T8 T^{8} Copy content Toggle raw display
6161 T8T6+T4++1 T^{8} - T^{6} + T^{4} + \cdots + 1 Copy content Toggle raw display
6767 (T+1)8 (T + 1)^{8} Copy content Toggle raw display
7171 (T4T3+T2++1)2 (T^{4} - T^{3} + T^{2} + \cdots + 1)^{2} Copy content Toggle raw display
7373 T8T6+T4++1 T^{8} - T^{6} + T^{4} + \cdots + 1 Copy content Toggle raw display
7979 T8T6+T4++1 T^{8} - T^{6} + T^{4} + \cdots + 1 Copy content Toggle raw display
8383 T8T6+T4++1 T^{8} - T^{6} + T^{4} + \cdots + 1 Copy content Toggle raw display
8989 (T2+1)4 (T^{2} + 1)^{4} Copy content Toggle raw display
9797 (T4+T3+T2++1)2 (T^{4} + T^{3} + T^{2} + \cdots + 1)^{2} Copy content Toggle raw display
show more
show less