Properties

Label 3069.1.cd.a
Level $3069$
Weight $1$
Character orbit 3069.cd
Analytic conductor $1.532$
Analytic rank $0$
Dimension $8$
Projective image $A_{5}$
CM/RM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3069,1,Mod(433,3069)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3069, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 2, 5]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3069.433");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3069 = 3^{2} \cdot 11 \cdot 31 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3069.cd (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.53163052377\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\Q(\zeta_{20})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(A_{5}\)
Projective field: Galois closure of 5.1.126630009.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + (\zeta_{20}^{2} - 1) q^{2} + (\zeta_{20}^{4} - \zeta_{20}^{2} + 1) q^{4} + \zeta_{20}^{4} q^{5} + \zeta_{20}^{2} q^{7} + (\zeta_{20}^{6} - \zeta_{20}^{4} + \cdots - 1) q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + (\zeta_{20}^{2} - 1) q^{2} + (\zeta_{20}^{4} - \zeta_{20}^{2} + 1) q^{4} + \zeta_{20}^{4} q^{5} + \zeta_{20}^{2} q^{7} + (\zeta_{20}^{6} - \zeta_{20}^{4} + \cdots - 1) q^{8}+ \cdots - \zeta_{20}^{6} q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{2} + 4 q^{4} - 2 q^{5} + 2 q^{7} - 2 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 6 q^{2} + 4 q^{4} - 2 q^{5} + 2 q^{7} - 2 q^{8} + 4 q^{10} - 4 q^{14} - 6 q^{20} + 6 q^{28} - 8 q^{32} + 2 q^{35} - 2 q^{40} + 4 q^{47} - 8 q^{56} + 6 q^{64} - 8 q^{67} - 4 q^{70} + 2 q^{71} - 8 q^{94} - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3069\mathbb{Z}\right)^\times\).

\(n\) \(838\) \(2080\) \(2729\)
\(\chi(n)\) \(-\zeta_{20}^{2}\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
433.1
0.587785 0.809017i
−0.587785 + 0.809017i
−0.951057 + 0.309017i
0.951057 0.309017i
−0.951057 0.309017i
0.951057 + 0.309017i
0.587785 + 0.809017i
−0.587785 0.809017i
−1.30902 0.951057i 0 0.500000 + 1.53884i −0.809017 + 0.587785i 0 −0.309017 0.951057i 0.309017 0.951057i 0 1.61803
433.2 −1.30902 0.951057i 0 0.500000 + 1.53884i −0.809017 + 0.587785i 0 −0.309017 0.951057i 0.309017 0.951057i 0 1.61803
1270.1 −0.190983 0.587785i 0 0.500000 0.363271i 0.309017 0.951057i 0 0.809017 0.587785i −0.809017 0.587785i 0 −0.618034
1270.2 −0.190983 0.587785i 0 0.500000 0.363271i 0.309017 0.951057i 0 0.809017 0.587785i −0.809017 0.587785i 0 −0.618034
1549.1 −0.190983 + 0.587785i 0 0.500000 + 0.363271i 0.309017 + 0.951057i 0 0.809017 + 0.587785i −0.809017 + 0.587785i 0 −0.618034
1549.2 −0.190983 + 0.587785i 0 0.500000 + 0.363271i 0.309017 + 0.951057i 0 0.809017 + 0.587785i −0.809017 + 0.587785i 0 −0.618034
2665.1 −1.30902 + 0.951057i 0 0.500000 1.53884i −0.809017 0.587785i 0 −0.309017 + 0.951057i 0.309017 + 0.951057i 0 1.61803
2665.2 −1.30902 + 0.951057i 0 0.500000 1.53884i −0.809017 0.587785i 0 −0.309017 + 0.951057i 0.309017 + 0.951057i 0 1.61803
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 433.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.c even 5 1 inner
31.b odd 2 1 inner
341.t odd 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3069.1.cd.a 8
3.b odd 2 1 3069.1.cd.b yes 8
11.c even 5 1 inner 3069.1.cd.a 8
31.b odd 2 1 inner 3069.1.cd.a 8
33.h odd 10 1 3069.1.cd.b yes 8
93.c even 2 1 3069.1.cd.b yes 8
341.t odd 10 1 inner 3069.1.cd.a 8
1023.cg even 10 1 3069.1.cd.b yes 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3069.1.cd.a 8 1.a even 1 1 trivial
3069.1.cd.a 8 11.c even 5 1 inner
3069.1.cd.a 8 31.b odd 2 1 inner
3069.1.cd.a 8 341.t odd 10 1 inner
3069.1.cd.b yes 8 3.b odd 2 1
3069.1.cd.b yes 8 33.h odd 10 1
3069.1.cd.b yes 8 93.c even 2 1
3069.1.cd.b yes 8 1023.cg even 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 3T_{2}^{3} + 4T_{2}^{2} + 2T_{2} + 1 \) acting on \(S_{1}^{\mathrm{new}}(3069, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} + 3 T^{3} + 4 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T^{4} + T^{3} + T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$7$ \( (T^{4} - T^{3} + T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{8} - T^{6} + T^{4} + \cdots + 1 \) Copy content Toggle raw display
$13$ \( T^{8} - T^{6} + T^{4} + \cdots + 1 \) Copy content Toggle raw display
$17$ \( T^{8} + T^{6} + 6 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{8} \) Copy content Toggle raw display
$23$ \( (T^{4} + 3 T^{2} + 1)^{2} \) Copy content Toggle raw display
$29$ \( T^{8} + T^{6} + 6 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$31$ \( T^{8} - T^{6} + T^{4} + \cdots + 1 \) Copy content Toggle raw display
$37$ \( T^{8} - T^{6} + T^{4} + \cdots + 1 \) Copy content Toggle raw display
$41$ \( T^{8} \) Copy content Toggle raw display
$43$ \( (T^{4} + 3 T^{2} + 1)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} - 2 T^{3} + 4 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$53$ \( T^{8} \) Copy content Toggle raw display
$59$ \( T^{8} \) Copy content Toggle raw display
$61$ \( T^{8} - T^{6} + T^{4} + \cdots + 1 \) Copy content Toggle raw display
$67$ \( (T + 1)^{8} \) Copy content Toggle raw display
$71$ \( (T^{4} - T^{3} + T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$73$ \( T^{8} - T^{6} + T^{4} + \cdots + 1 \) Copy content Toggle raw display
$79$ \( T^{8} - T^{6} + T^{4} + \cdots + 1 \) Copy content Toggle raw display
$83$ \( T^{8} - T^{6} + T^{4} + \cdots + 1 \) Copy content Toggle raw display
$89$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$97$ \( (T^{4} + T^{3} + T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
show more
show less