L(s) = 1 | − 2-s + 2·4-s − 2·7-s − 5·8-s + 9-s + 4·11-s + 2·14-s + 5·16-s − 18-s − 4·22-s + 10·25-s − 4·28-s − 10·32-s + 2·36-s + 16·37-s + 8·43-s + 8·44-s − 11·49-s − 10·50-s + 8·53-s + 10·56-s − 2·63-s + 17·64-s − 5·72-s − 16·74-s − 8·77-s + 26·79-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 4-s − 0.755·7-s − 1.76·8-s + 1/3·9-s + 1.20·11-s + 0.534·14-s + 5/4·16-s − 0.235·18-s − 0.852·22-s + 2·25-s − 0.755·28-s − 1.76·32-s + 1/3·36-s + 2.63·37-s + 1.21·43-s + 1.20·44-s − 1.57·49-s − 1.41·50-s + 1.09·53-s + 1.33·56-s − 0.251·63-s + 17/8·64-s − 0.589·72-s − 1.85·74-s − 0.911·77-s + 2.92·79-s + ⋯ |
Λ(s)=(=((28⋅74⋅114)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((28⋅74⋅114)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
28⋅74⋅114
|
Sign: |
1
|
Analytic conductor: |
36.5856 |
Root analytic conductor: |
1.56824 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 28⋅74⋅114, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.631717314 |
L(21) |
≈ |
1.631717314 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C22 | 1+T−T2+pT3+p2T4 |
| 7 | C2 | (1+T+pT2)2 |
| 11 | C22 | 1−4T+5T2−4pT3+p2T4 |
good | 3 | C23 | 1−T2−8T4−p2T6+p4T8 |
| 5 | C22 | (1−pT2+p2T4)2 |
| 13 | C22 | (1−19T2+p2T4)2 |
| 17 | C23 | 1+6T2−253T4+6p2T6+p4T8 |
| 19 | C22 | (1−pT2+p2T4)2 |
| 23 | C22×C22 | (1−8T+41T2−8pT3+p2T4)(1+8T+41T2+8pT3+p2T4) |
| 29 | C22 | (1+5T2+p2T4)2 |
| 31 | C23 | 1−50T2+1539T4−50p2T6+p4T8 |
| 37 | C22 | (1−8T+27T2−8pT3+p2T4)2 |
| 41 | C2 | (1−pT2)4 |
| 43 | C2 | (1−2T+pT2)4 |
| 47 | C22 | (1+pT2+p2T4)2 |
| 53 | C22 | (1−4T−37T2−4pT3+p2T4)2 |
| 59 | C23 | 1+111T2+8840T4+111p2T6+p4T8 |
| 61 | C23 | 1+115T2+9504T4+115p2T6+p4T8 |
| 67 | C23 | 1+127T2+11640T4+127p2T6+p4T8 |
| 71 | C2 | (1−16T+pT2)2(1+16T+pT2)2 |
| 73 | C23 | 1+34T2−4173T4+34p2T6+p4T8 |
| 79 | C2 | (1−17T+pT2)2(1+4T+pT2)2 |
| 83 | C2 | (1+pT2)4 |
| 89 | C22 | (1−14T+107T2−14pT3+p2T4)2 |
| 97 | C2 | (1−7T+pT2)4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.688106580529564596149193465987, −8.254000898637319667647642313932, −7.939997294723289162588479863487, −7.69520832298764954453756809465, −7.69292817981257631736683171156, −7.04694028035111952244533651038, −7.02205138122538449900217255525, −6.55452601601042274363952623370, −6.54056845175998895519120571389, −6.24119971776377700456157998315, −6.17491161113186027297624416531, −5.77926771877885086278316910738, −5.28096265557092402268158243804, −5.15927870358845290077239650599, −4.73289205300307711125971517374, −4.30139628312825422825387016938, −4.10499508352843310201253655710, −3.63015172122245793587229739462, −3.23869005904284853338157907331, −3.16676602594659353979993680610, −2.68344781015173082511399528384, −2.16637211343685779202692696727, −2.05172014348148192776193157999, −0.985205700718565601513783445839, −0.855701828923577491365219203156,
0.855701828923577491365219203156, 0.985205700718565601513783445839, 2.05172014348148192776193157999, 2.16637211343685779202692696727, 2.68344781015173082511399528384, 3.16676602594659353979993680610, 3.23869005904284853338157907331, 3.63015172122245793587229739462, 4.10499508352843310201253655710, 4.30139628312825422825387016938, 4.73289205300307711125971517374, 5.15927870358845290077239650599, 5.28096265557092402268158243804, 5.77926771877885086278316910738, 6.17491161113186027297624416531, 6.24119971776377700456157998315, 6.54056845175998895519120571389, 6.55452601601042274363952623370, 7.02205138122538449900217255525, 7.04694028035111952244533651038, 7.69292817981257631736683171156, 7.69520832298764954453756809465, 7.939997294723289162588479863487, 8.254000898637319667647642313932, 8.688106580529564596149193465987