Properties

Label 308.2.n.a.263.2
Level $308$
Weight $2$
Character 308.263
Analytic conductor $2.459$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [308,2,Mod(219,308)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(308, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("308.219");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 308 = 2^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 308.n (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.45939238226\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - x^{2} - 2x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 263.2
Root \(-0.895644 - 1.09445i\) of defining polynomial
Character \(\chi\) \(=\) 308.263
Dual form 308.2.n.a.219.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.895644 - 1.09445i) q^{2} +(2.29129 + 1.32288i) q^{3} +(-0.395644 - 1.96048i) q^{4} +(3.50000 - 1.32288i) q^{6} +(-0.500000 + 2.59808i) q^{7} +(-2.50000 - 1.32288i) q^{8} +(2.00000 + 3.46410i) q^{9} +(3.29129 - 0.409175i) q^{11} +(1.68693 - 5.01540i) q^{12} -2.64575i q^{13} +(2.39564 + 2.87418i) q^{14} +(-3.68693 + 1.55130i) q^{16} +(-4.58258 - 2.64575i) q^{17} +(5.58258 + 0.913701i) q^{18} +(-4.58258 + 5.29150i) q^{21} +(2.50000 - 3.96863i) q^{22} +(-4.58258 + 2.64575i) q^{23} +(-3.97822 - 6.33828i) q^{24} +(2.50000 - 4.33013i) q^{25} +(-2.89564 - 2.36965i) q^{26} +2.64575i q^{27} +(5.29129 - 0.0476751i) q^{28} +7.93725i q^{29} +(-9.16515 - 5.29150i) q^{31} +(-1.60436 + 5.42458i) q^{32} +(8.08258 + 3.41643i) q^{33} +(-7.00000 + 2.64575i) q^{34} +(6.00000 - 5.29150i) q^{36} +(4.00000 + 6.92820i) q^{37} +(3.50000 - 6.06218i) q^{39} +(1.68693 + 9.75470i) q^{42} +2.00000 q^{43} +(-2.10436 - 6.29060i) q^{44} +(-1.20871 + 7.38505i) q^{46} +(-10.5000 - 1.32288i) q^{48} +(-6.50000 - 2.59808i) q^{49} +(-2.50000 - 6.61438i) q^{50} +(-7.00000 - 12.1244i) q^{51} +(-5.18693 + 1.04678i) q^{52} +(2.00000 - 3.46410i) q^{53} +(2.89564 + 2.36965i) q^{54} +(4.68693 - 5.83375i) q^{56} +(8.68693 + 7.10895i) q^{58} +(-2.29129 - 1.32288i) q^{59} +(2.29129 - 1.32288i) q^{61} +(-14.0000 + 5.29150i) q^{62} +(-10.0000 + 3.46410i) q^{63} +(4.50000 + 6.61438i) q^{64} +(10.9782 - 5.78608i) q^{66} +(-2.29129 - 1.32288i) q^{67} +(-3.37386 + 10.0308i) q^{68} -14.0000 q^{69} -5.29150i q^{71} +(-0.417424 - 11.3060i) q^{72} +(9.16515 + 5.29150i) q^{73} +(11.1652 + 1.82740i) q^{74} +(11.4564 - 6.61438i) q^{75} +(-0.582576 + 8.75560i) q^{77} +(-3.50000 - 9.26013i) q^{78} +(6.50000 + 11.2583i) q^{79} +(2.50000 - 4.33013i) q^{81} +(12.1869 + 6.89048i) q^{84} +(1.79129 - 2.18890i) q^{86} +(-10.5000 + 18.1865i) q^{87} +(-8.76951 - 3.33103i) q^{88} +(7.00000 + 12.1244i) q^{89} +(6.87386 + 1.32288i) q^{91} +(7.00000 + 7.93725i) q^{92} +(-14.0000 - 24.2487i) q^{93} +(-10.8521 + 10.3069i) q^{96} +7.00000 q^{97} +(-8.66515 + 4.78698i) q^{98} +(8.00000 + 10.5830i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} + 3 q^{4} + 14 q^{6} - 2 q^{7} - 10 q^{8} + 8 q^{9} + 4 q^{11} - 7 q^{12} + 5 q^{14} - q^{16} + 4 q^{18} + 10 q^{22} + 7 q^{24} + 10 q^{25} - 7 q^{26} + 12 q^{28} - 11 q^{32} + 14 q^{33} - 28 q^{34}+ \cdots + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/308\mathbb{Z}\right)^\times\).

\(n\) \(45\) \(57\) \(155\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.895644 1.09445i 0.633316 0.773893i
\(3\) 2.29129 + 1.32288i 1.32288 + 0.763763i 0.984186 0.177136i \(-0.0566831\pi\)
0.338689 + 0.940898i \(0.390016\pi\)
\(4\) −0.395644 1.96048i −0.197822 0.980238i
\(5\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(6\) 3.50000 1.32288i 1.42887 0.540062i
\(7\) −0.500000 + 2.59808i −0.188982 + 0.981981i
\(8\) −2.50000 1.32288i −0.883883 0.467707i
\(9\) 2.00000 + 3.46410i 0.666667 + 1.15470i
\(10\) 0 0
\(11\) 3.29129 0.409175i 0.992361 0.123371i
\(12\) 1.68693 5.01540i 0.486975 1.44782i
\(13\) 2.64575i 0.733799i −0.930261 0.366900i \(-0.880419\pi\)
0.930261 0.366900i \(-0.119581\pi\)
\(14\) 2.39564 + 2.87418i 0.640263 + 0.768156i
\(15\) 0 0
\(16\) −3.68693 + 1.55130i −0.921733 + 0.387825i
\(17\) −4.58258 2.64575i −1.11144 0.641689i −0.172236 0.985056i \(-0.555099\pi\)
−0.939201 + 0.343367i \(0.888433\pi\)
\(18\) 5.58258 + 0.913701i 1.31583 + 0.215361i
\(19\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(20\) 0 0
\(21\) −4.58258 + 5.29150i −1.00000 + 1.15470i
\(22\) 2.50000 3.96863i 0.533002 0.846114i
\(23\) −4.58258 + 2.64575i −0.955533 + 0.551677i −0.894795 0.446476i \(-0.852679\pi\)
−0.0607377 + 0.998154i \(0.519345\pi\)
\(24\) −3.97822 6.33828i −0.812051 1.29380i
\(25\) 2.50000 4.33013i 0.500000 0.866025i
\(26\) −2.89564 2.36965i −0.567882 0.464727i
\(27\) 2.64575i 0.509175i
\(28\) 5.29129 0.0476751i 0.999959 0.00900975i
\(29\) 7.93725i 1.47391i 0.675941 + 0.736956i \(0.263737\pi\)
−0.675941 + 0.736956i \(0.736263\pi\)
\(30\) 0 0
\(31\) −9.16515 5.29150i −1.64611 0.950382i −0.978598 0.205783i \(-0.934026\pi\)
−0.667512 0.744599i \(-0.732641\pi\)
\(32\) −1.60436 + 5.42458i −0.283613 + 0.958939i
\(33\) 8.08258 + 3.41643i 1.40700 + 0.594724i
\(34\) −7.00000 + 2.64575i −1.20049 + 0.453743i
\(35\) 0 0
\(36\) 6.00000 5.29150i 1.00000 0.881917i
\(37\) 4.00000 + 6.92820i 0.657596 + 1.13899i 0.981236 + 0.192809i \(0.0617599\pi\)
−0.323640 + 0.946180i \(0.604907\pi\)
\(38\) 0 0
\(39\) 3.50000 6.06218i 0.560449 0.970725i
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 1.68693 + 9.75470i 0.260299 + 1.50518i
\(43\) 2.00000 0.304997 0.152499 0.988304i \(-0.451268\pi\)
0.152499 + 0.988304i \(0.451268\pi\)
\(44\) −2.10436 6.29060i −0.317244 0.948344i
\(45\) 0 0
\(46\) −1.20871 + 7.38505i −0.178215 + 1.08887i
\(47\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(48\) −10.5000 1.32288i −1.51554 0.190941i
\(49\) −6.50000 2.59808i −0.928571 0.371154i
\(50\) −2.50000 6.61438i −0.353553 0.935414i
\(51\) −7.00000 12.1244i −0.980196 1.69775i
\(52\) −5.18693 + 1.04678i −0.719298 + 0.145162i
\(53\) 2.00000 3.46410i 0.274721 0.475831i −0.695344 0.718677i \(-0.744748\pi\)
0.970065 + 0.242846i \(0.0780811\pi\)
\(54\) 2.89564 + 2.36965i 0.394047 + 0.322469i
\(55\) 0 0
\(56\) 4.68693 5.83375i 0.626318 0.779568i
\(57\) 0 0
\(58\) 8.68693 + 7.10895i 1.14065 + 0.933451i
\(59\) −2.29129 1.32288i −0.298300 0.172224i 0.343379 0.939197i \(-0.388429\pi\)
−0.641679 + 0.766973i \(0.721762\pi\)
\(60\) 0 0
\(61\) 2.29129 1.32288i 0.293369 0.169377i −0.346091 0.938201i \(-0.612491\pi\)
0.639460 + 0.768824i \(0.279158\pi\)
\(62\) −14.0000 + 5.29150i −1.77800 + 0.672022i
\(63\) −10.0000 + 3.46410i −1.25988 + 0.436436i
\(64\) 4.50000 + 6.61438i 0.562500 + 0.826797i
\(65\) 0 0
\(66\) 10.9782 5.78608i 1.35133 0.712217i
\(67\) −2.29129 1.32288i −0.279925 0.161615i 0.353464 0.935448i \(-0.385004\pi\)
−0.633390 + 0.773833i \(0.718337\pi\)
\(68\) −3.37386 + 10.0308i −0.409141 + 1.21641i
\(69\) −14.0000 −1.68540
\(70\) 0 0
\(71\) 5.29150i 0.627986i −0.949425 0.313993i \(-0.898333\pi\)
0.949425 0.313993i \(-0.101667\pi\)
\(72\) −0.417424 11.3060i −0.0491939 1.33243i
\(73\) 9.16515 + 5.29150i 1.07270 + 0.619324i 0.928918 0.370286i \(-0.120740\pi\)
0.143782 + 0.989609i \(0.454074\pi\)
\(74\) 11.1652 + 1.82740i 1.29792 + 0.212431i
\(75\) 11.4564 6.61438i 1.32288 0.763763i
\(76\) 0 0
\(77\) −0.582576 + 8.75560i −0.0663907 + 0.997794i
\(78\) −3.50000 9.26013i −0.396297 1.04850i
\(79\) 6.50000 + 11.2583i 0.731307 + 1.26666i 0.956325 + 0.292306i \(0.0944227\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) 2.50000 4.33013i 0.277778 0.481125i
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 12.1869 + 6.89048i 1.32970 + 0.751813i
\(85\) 0 0
\(86\) 1.79129 2.18890i 0.193160 0.236035i
\(87\) −10.5000 + 18.1865i −1.12572 + 1.94980i
\(88\) −8.76951 3.33103i −0.934833 0.355089i
\(89\) 7.00000 + 12.1244i 0.741999 + 1.28518i 0.951584 + 0.307389i \(0.0994552\pi\)
−0.209585 + 0.977790i \(0.567211\pi\)
\(90\) 0 0
\(91\) 6.87386 + 1.32288i 0.720577 + 0.138675i
\(92\) 7.00000 + 7.93725i 0.729800 + 0.827516i
\(93\) −14.0000 24.2487i −1.45173 2.51447i
\(94\) 0 0
\(95\) 0 0
\(96\) −10.8521 + 10.3069i −1.10759 + 1.05194i
\(97\) 7.00000 0.710742 0.355371 0.934725i \(-0.384354\pi\)
0.355371 + 0.934725i \(0.384354\pi\)
\(98\) −8.66515 + 4.78698i −0.875312 + 0.483558i
\(99\) 8.00000 + 10.5830i 0.804030 + 1.06363i
\(100\) −9.47822 3.18800i −0.947822 0.318800i
\(101\) −6.87386 3.96863i −0.683975 0.394893i 0.117376 0.993088i \(-0.462552\pi\)
−0.801351 + 0.598194i \(0.795885\pi\)
\(102\) −19.5390 3.19795i −1.93465 0.316644i
\(103\) 4.58258 2.64575i 0.451535 0.260694i −0.256943 0.966426i \(-0.582715\pi\)
0.708478 + 0.705733i \(0.249382\pi\)
\(104\) −3.50000 + 6.61438i −0.343203 + 0.648593i
\(105\) 0 0
\(106\) −2.00000 5.29150i −0.194257 0.513956i
\(107\) 4.00000 + 6.92820i 0.386695 + 0.669775i 0.992003 0.126217i \(-0.0402834\pi\)
−0.605308 + 0.795991i \(0.706950\pi\)
\(108\) 5.18693 1.04678i 0.499113 0.100726i
\(109\) −9.16515 5.29150i −0.877862 0.506834i −0.00790932 0.999969i \(-0.502518\pi\)
−0.869953 + 0.493135i \(0.835851\pi\)
\(110\) 0 0
\(111\) 21.1660i 2.00899i
\(112\) −2.18693 10.3546i −0.206646 0.978416i
\(113\) −19.0000 −1.78737 −0.893685 0.448695i \(-0.851889\pi\)
−0.893685 + 0.448695i \(0.851889\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 15.5608 3.14033i 1.44478 0.291572i
\(117\) 9.16515 5.29150i 0.847319 0.489200i
\(118\) −3.50000 + 1.32288i −0.322201 + 0.121781i
\(119\) 9.16515 10.5830i 0.840168 0.970143i
\(120\) 0 0
\(121\) 10.6652 2.69343i 0.969559 0.244857i
\(122\) 0.604356 3.69253i 0.0547158 0.334306i
\(123\) 0 0
\(124\) −6.74773 + 20.0616i −0.605964 + 1.80159i
\(125\) 0 0
\(126\) −5.16515 + 14.0471i −0.460148 + 1.25142i
\(127\) 5.00000 0.443678 0.221839 0.975083i \(-0.428794\pi\)
0.221839 + 0.975083i \(0.428794\pi\)
\(128\) 11.2695 + 0.999100i 0.996093 + 0.0883088i
\(129\) 4.58258 + 2.64575i 0.403473 + 0.232945i
\(130\) 0 0
\(131\) −7.00000 12.1244i −0.611593 1.05931i −0.990972 0.134069i \(-0.957196\pi\)
0.379379 0.925241i \(-0.376138\pi\)
\(132\) 3.50000 17.1974i 0.304636 1.49684i
\(133\) 0 0
\(134\) −3.50000 + 1.32288i −0.302354 + 0.114279i
\(135\) 0 0
\(136\) 7.95644 + 12.6766i 0.682259 + 1.08701i
\(137\) −1.50000 + 2.59808i −0.128154 + 0.221969i −0.922961 0.384893i \(-0.874238\pi\)
0.794808 + 0.606861i \(0.207572\pi\)
\(138\) −12.5390 + 15.3223i −1.06739 + 1.30432i
\(139\) 14.0000 1.18746 0.593732 0.804663i \(-0.297654\pi\)
0.593732 + 0.804663i \(0.297654\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −5.79129 4.73930i −0.485994 0.397713i
\(143\) −1.08258 8.70793i −0.0905295 0.728194i
\(144\) −12.7477 9.66930i −1.06231 0.805775i
\(145\) 0 0
\(146\) 14.0000 5.29150i 1.15865 0.437928i
\(147\) −11.4564 14.5516i −0.944911 1.20020i
\(148\) 12.0000 10.5830i 0.986394 0.869918i
\(149\) 9.16515 5.29150i 0.750838 0.433497i −0.0751583 0.997172i \(-0.523946\pi\)
0.825997 + 0.563675i \(0.190613\pi\)
\(150\) 3.02178 18.4626i 0.246727 1.50747i
\(151\) 8.50000 14.7224i 0.691720 1.19809i −0.279554 0.960130i \(-0.590186\pi\)
0.971274 0.237964i \(-0.0764802\pi\)
\(152\) 0 0
\(153\) 21.1660i 1.71117i
\(154\) 9.06080 + 8.47950i 0.730140 + 0.683298i
\(155\) 0 0
\(156\) −13.2695 4.46320i −1.06241 0.357342i
\(157\) 7.00000 12.1244i 0.558661 0.967629i −0.438948 0.898513i \(-0.644649\pi\)
0.997609 0.0691164i \(-0.0220180\pi\)
\(158\) 18.1434 + 2.96953i 1.44341 + 0.236243i
\(159\) 9.16515 5.29150i 0.726844 0.419643i
\(160\) 0 0
\(161\) −4.58258 13.2288i −0.361158 1.04257i
\(162\) −2.50000 6.61438i −0.196419 0.519675i
\(163\) 2.29129 1.32288i 0.179468 0.103616i −0.407575 0.913172i \(-0.633625\pi\)
0.587042 + 0.809556i \(0.300292\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −21.0000 −1.62503 −0.812514 0.582941i \(-0.801902\pi\)
−0.812514 + 0.582941i \(0.801902\pi\)
\(168\) 18.4564 7.16658i 1.42395 0.552914i
\(169\) 6.00000 0.461538
\(170\) 0 0
\(171\) 0 0
\(172\) −0.791288 3.92095i −0.0603351 0.298970i
\(173\) −11.4564 + 6.61438i −0.871017 + 0.502882i −0.867686 0.497113i \(-0.834394\pi\)
−0.00333090 + 0.999994i \(0.501060\pi\)
\(174\) 10.5000 + 27.7804i 0.796003 + 2.10603i
\(175\) 10.0000 + 8.66025i 0.755929 + 0.654654i
\(176\) −11.5000 + 6.61438i −0.866845 + 0.498578i
\(177\) −3.50000 6.06218i −0.263076 0.455661i
\(178\) 19.5390 + 3.19795i 1.46451 + 0.239697i
\(179\) 6.87386 + 3.96863i 0.513777 + 0.296629i 0.734385 0.678733i \(-0.237471\pi\)
−0.220608 + 0.975363i \(0.570804\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 7.60436 6.33828i 0.563672 0.469824i
\(183\) 7.00000 0.517455
\(184\) 14.9564 0.552200i 1.10260 0.0407088i
\(185\) 0 0
\(186\) −39.0780 6.39590i −2.86534 0.468970i
\(187\) −16.1652 6.83285i −1.18211 0.499668i
\(188\) 0 0
\(189\) −6.87386 1.32288i −0.500000 0.0962250i
\(190\) 0 0
\(191\) −9.16515 + 5.29150i −0.663167 + 0.382880i −0.793483 0.608593i \(-0.791734\pi\)
0.130316 + 0.991473i \(0.458401\pi\)
\(192\) 1.56080 + 21.1084i 0.112641 + 1.52337i
\(193\) 18.3303 + 10.5830i 1.31944 + 0.761781i 0.983639 0.180150i \(-0.0576584\pi\)
0.335805 + 0.941932i \(0.390992\pi\)
\(194\) 6.26951 7.66115i 0.450124 0.550039i
\(195\) 0 0
\(196\) −2.52178 + 13.7710i −0.180127 + 0.983643i
\(197\) 7.93725i 0.565506i 0.959193 + 0.282753i \(0.0912477\pi\)
−0.959193 + 0.282753i \(0.908752\pi\)
\(198\) 18.7477 + 0.723000i 1.33234 + 0.0513814i
\(199\) 9.16515 + 5.29150i 0.649700 + 0.375105i 0.788341 0.615238i \(-0.210940\pi\)
−0.138641 + 0.990343i \(0.544273\pi\)
\(200\) −11.9782 + 7.51813i −0.846988 + 0.531612i
\(201\) −3.50000 6.06218i −0.246871 0.427593i
\(202\) −10.5000 + 3.96863i −0.738777 + 0.279232i
\(203\) −20.6216 3.96863i −1.44735 0.278543i
\(204\) −21.0000 + 18.5203i −1.47029 + 1.29668i
\(205\) 0 0
\(206\) 1.20871 7.38505i 0.0842150 0.514541i
\(207\) −18.3303 10.5830i −1.27404 0.735570i
\(208\) 4.10436 + 9.75470i 0.284586 + 0.676367i
\(209\) 0 0
\(210\) 0 0
\(211\) −2.00000 −0.137686 −0.0688428 0.997628i \(-0.521931\pi\)
−0.0688428 + 0.997628i \(0.521931\pi\)
\(212\) −7.58258 2.55040i −0.520773 0.175162i
\(213\) 7.00000 12.1244i 0.479632 0.830747i
\(214\) 11.1652 + 1.82740i 0.763234 + 0.124919i
\(215\) 0 0
\(216\) 3.50000 6.61438i 0.238145 0.450051i
\(217\) 18.3303 21.1660i 1.24434 1.43684i
\(218\) −14.0000 + 5.29150i −0.948200 + 0.358386i
\(219\) 14.0000 + 24.2487i 0.946032 + 1.63858i
\(220\) 0 0
\(221\) −7.00000 + 12.1244i −0.470871 + 0.815572i
\(222\) 23.1652 + 18.9572i 1.55474 + 1.27232i
\(223\) 15.8745i 1.06304i 0.847047 + 0.531518i \(0.178378\pi\)
−0.847047 + 0.531518i \(0.821622\pi\)
\(224\) −13.2913 6.88053i −0.888062 0.459725i
\(225\) 20.0000 1.33333
\(226\) −17.0172 + 20.7946i −1.13197 + 1.38323i
\(227\) 7.00000 12.1244i 0.464606 0.804722i −0.534577 0.845120i \(-0.679529\pi\)
0.999184 + 0.0403978i \(0.0128625\pi\)
\(228\) 0 0
\(229\) −7.00000 12.1244i −0.462573 0.801200i 0.536515 0.843891i \(-0.319740\pi\)
−0.999088 + 0.0426906i \(0.986407\pi\)
\(230\) 0 0
\(231\) −12.9174 + 19.2909i −0.849904 + 1.26925i
\(232\) 10.5000 19.8431i 0.689359 1.30277i
\(233\) −13.7477 + 7.93725i −0.900644 + 0.519987i −0.877409 0.479743i \(-0.840730\pi\)
−0.0232346 + 0.999730i \(0.507396\pi\)
\(234\) 2.41742 14.7701i 0.158032 0.965552i
\(235\) 0 0
\(236\) −1.68693 + 5.01540i −0.109810 + 0.326475i
\(237\) 34.3948i 2.23418i
\(238\) −3.37386 19.5094i −0.218695 1.26461i
\(239\) 19.0000 1.22901 0.614504 0.788914i \(-0.289356\pi\)
0.614504 + 0.788914i \(0.289356\pi\)
\(240\) 0 0
\(241\) −4.58258 2.64575i −0.295190 0.170428i 0.345090 0.938570i \(-0.387848\pi\)
−0.640280 + 0.768142i \(0.721182\pi\)
\(242\) 6.60436 14.0848i 0.424544 0.905407i
\(243\) 18.3303 10.5830i 1.17589 0.678900i
\(244\) −3.50000 3.96863i −0.224065 0.254065i
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 15.9129 + 25.3531i 1.01047 + 1.60992i
\(249\) 0 0
\(250\) 0 0
\(251\) 15.8745i 1.00199i −0.865450 0.500995i \(-0.832967\pi\)
0.865450 0.500995i \(-0.167033\pi\)
\(252\) 10.7477 + 18.2342i 0.677043 + 1.14865i
\(253\) −14.0000 + 10.5830i −0.880172 + 0.665348i
\(254\) 4.47822 5.47225i 0.280988 0.343360i
\(255\) 0 0
\(256\) 11.1869 11.4391i 0.699183 0.714943i
\(257\) 3.50000 + 6.06218i 0.218324 + 0.378148i 0.954296 0.298864i \(-0.0966077\pi\)
−0.735972 + 0.677012i \(0.763274\pi\)
\(258\) 7.00000 2.64575i 0.435801 0.164717i
\(259\) −20.0000 + 6.92820i −1.24274 + 0.430498i
\(260\) 0 0
\(261\) −27.4955 + 15.8745i −1.70193 + 0.982607i
\(262\) −19.5390 3.19795i −1.20712 0.197570i
\(263\) 5.50000 9.52628i 0.339145 0.587416i −0.645128 0.764075i \(-0.723196\pi\)
0.984272 + 0.176659i \(0.0565291\pi\)
\(264\) −15.6869 19.2333i −0.965464 1.18373i
\(265\) 0 0
\(266\) 0 0
\(267\) 37.0405i 2.26684i
\(268\) −1.68693 + 5.01540i −0.103046 + 0.306364i
\(269\) −14.0000 + 24.2487i −0.853595 + 1.47847i 0.0243472 + 0.999704i \(0.492249\pi\)
−0.877942 + 0.478766i \(0.841084\pi\)
\(270\) 0 0
\(271\) −3.50000 6.06218i −0.212610 0.368251i 0.739921 0.672694i \(-0.234863\pi\)
−0.952531 + 0.304443i \(0.901530\pi\)
\(272\) 21.0000 + 2.64575i 1.27331 + 0.160422i
\(273\) 14.0000 + 12.1244i 0.847319 + 0.733799i
\(274\) 1.50000 + 3.96863i 0.0906183 + 0.239754i
\(275\) 6.45644 15.2746i 0.389338 0.921095i
\(276\) 5.53901 + 27.4467i 0.333410 + 1.65209i
\(277\) 11.4564 + 6.61438i 0.688351 + 0.397419i 0.802994 0.595987i \(-0.203239\pi\)
−0.114643 + 0.993407i \(0.536572\pi\)
\(278\) 12.5390 15.3223i 0.752040 0.918971i
\(279\) 42.3320i 2.53435i
\(280\) 0 0
\(281\) 15.8745i 0.946994i −0.880795 0.473497i \(-0.842992\pi\)
0.880795 0.473497i \(-0.157008\pi\)
\(282\) 0 0
\(283\) −14.0000 + 24.2487i −0.832214 + 1.44144i 0.0640654 + 0.997946i \(0.479593\pi\)
−0.896279 + 0.443491i \(0.853740\pi\)
\(284\) −10.3739 + 2.09355i −0.615576 + 0.124229i
\(285\) 0 0
\(286\) −10.5000 6.61438i −0.620878 0.391116i
\(287\) 0 0
\(288\) −22.0000 + 5.29150i −1.29636 + 0.311805i
\(289\) 5.50000 + 9.52628i 0.323529 + 0.560369i
\(290\) 0 0
\(291\) 16.0390 + 9.26013i 0.940224 + 0.542838i
\(292\) 6.74773 20.0616i 0.394881 1.17402i
\(293\) 21.1660i 1.23653i −0.785969 0.618266i \(-0.787836\pi\)
0.785969 0.618266i \(-0.212164\pi\)
\(294\) −26.1869 0.494575i −1.52725 0.0288442i
\(295\) 0 0
\(296\) −0.834849 22.6120i −0.0485246 1.31430i
\(297\) 1.08258 + 8.70793i 0.0628174 + 0.505285i
\(298\) 2.41742 14.7701i 0.140038 0.855609i
\(299\) 7.00000 + 12.1244i 0.404820 + 0.701170i
\(300\) −17.5000 19.8431i −1.01036 1.14564i
\(301\) −1.00000 + 5.19615i −0.0576390 + 0.299501i
\(302\) −8.50000 22.4889i −0.489120 1.29409i
\(303\) −10.5000 18.1865i −0.603209 1.04479i
\(304\) 0 0
\(305\) 0 0
\(306\) −23.1652 18.9572i −1.32426 1.08371i
\(307\) −28.0000 −1.59804 −0.799022 0.601302i \(-0.794649\pi\)
−0.799022 + 0.601302i \(0.794649\pi\)
\(308\) 17.3956 2.32198i 0.991209 0.132307i
\(309\) 14.0000 0.796432
\(310\) 0 0
\(311\) 9.16515 + 5.29150i 0.519708 + 0.300054i 0.736815 0.676094i \(-0.236329\pi\)
−0.217107 + 0.976148i \(0.569662\pi\)
\(312\) −16.7695 + 10.5254i −0.949386 + 0.595882i
\(313\) 10.5000 + 18.1865i 0.593495 + 1.02796i 0.993757 + 0.111563i \(0.0355857\pi\)
−0.400262 + 0.916401i \(0.631081\pi\)
\(314\) −7.00000 18.5203i −0.395033 1.04516i
\(315\) 0 0
\(316\) 19.5000 17.1974i 1.09696 0.967428i
\(317\) 3.00000 + 5.19615i 0.168497 + 0.291845i 0.937892 0.346929i \(-0.112775\pi\)
−0.769395 + 0.638774i \(0.779442\pi\)
\(318\) 2.41742 14.7701i 0.135562 0.828266i
\(319\) 3.24773 + 26.1238i 0.181838 + 1.46265i
\(320\) 0 0
\(321\) 21.1660i 1.18137i
\(322\) −18.5826 6.83285i −1.03557 0.380780i
\(323\) 0 0
\(324\) −9.47822 3.18800i −0.526568 0.177111i
\(325\) −11.4564 6.61438i −0.635489 0.366900i
\(326\) 0.604356 3.69253i 0.0334722 0.204510i
\(327\) −14.0000 24.2487i −0.774202 1.34096i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −20.6216 + 11.9059i −1.13347 + 0.654406i −0.944804 0.327636i \(-0.893748\pi\)
−0.188661 + 0.982042i \(0.560415\pi\)
\(332\) 0 0
\(333\) −16.0000 + 27.7128i −0.876795 + 1.51865i
\(334\) −18.8085 + 22.9835i −1.02916 + 1.25760i
\(335\) 0 0
\(336\) 8.68693 26.6184i 0.473911 1.45215i
\(337\) 15.8745i 0.864740i 0.901696 + 0.432370i \(0.142322\pi\)
−0.901696 + 0.432370i \(0.857678\pi\)
\(338\) 5.37386 6.56670i 0.292300 0.357182i
\(339\) −43.5345 25.1346i −2.36447 1.36513i
\(340\) 0 0
\(341\) −32.3303 13.6657i −1.75078 0.740039i
\(342\) 0 0
\(343\) 10.0000 15.5885i 0.539949 0.841698i
\(344\) −5.00000 2.64575i −0.269582 0.142649i
\(345\) 0 0
\(346\) −3.02178 + 18.4626i −0.162452 + 0.992557i
\(347\) −9.00000 + 15.5885i −0.483145 + 0.836832i −0.999813 0.0193540i \(-0.993839\pi\)
0.516667 + 0.856186i \(0.327172\pi\)
\(348\) 39.8085 + 13.3896i 2.13396 + 0.717758i
\(349\) 10.5830i 0.566495i 0.959047 + 0.283248i \(0.0914118\pi\)
−0.959047 + 0.283248i \(0.908588\pi\)
\(350\) 18.4347 3.18800i 0.985374 0.170406i
\(351\) 7.00000 0.373632
\(352\) −3.06080 + 18.5103i −0.163141 + 0.986603i
\(353\) −7.00000 + 12.1244i −0.372572 + 0.645314i −0.989960 0.141344i \(-0.954858\pi\)
0.617388 + 0.786659i \(0.288191\pi\)
\(354\) −9.76951 1.59898i −0.519243 0.0849846i
\(355\) 0 0
\(356\) 21.0000 18.5203i 1.11300 0.981572i
\(357\) 35.0000 12.1244i 1.85240 0.641689i
\(358\) 10.5000 3.96863i 0.554942 0.209748i
\(359\) −7.50000 12.9904i −0.395835 0.685606i 0.597372 0.801964i \(-0.296211\pi\)
−0.993207 + 0.116358i \(0.962878\pi\)
\(360\) 0 0
\(361\) 9.50000 16.4545i 0.500000 0.866025i
\(362\) 0 0
\(363\) 28.0000 + 7.93725i 1.46962 + 0.416598i
\(364\) −0.126136 13.9994i −0.00661135 0.733770i
\(365\) 0 0
\(366\) 6.26951 7.66115i 0.327712 0.400455i
\(367\) 13.7477 + 7.93725i 0.717626 + 0.414321i 0.813878 0.581036i \(-0.197352\pi\)
−0.0962526 + 0.995357i \(0.530686\pi\)
\(368\) 12.7913 16.8637i 0.666792 0.879079i
\(369\) 0 0
\(370\) 0 0
\(371\) 8.00000 + 6.92820i 0.415339 + 0.359694i
\(372\) −42.0000 + 37.0405i −2.17760 + 1.92046i
\(373\) −20.6216 + 11.9059i −1.06775 + 0.616463i −0.927565 0.373663i \(-0.878102\pi\)
−0.140181 + 0.990126i \(0.544768\pi\)
\(374\) −21.9564 + 11.5722i −1.13534 + 0.598382i
\(375\) 0 0
\(376\) 0 0
\(377\) 21.0000 1.08156
\(378\) −7.60436 + 6.33828i −0.391126 + 0.326006i
\(379\) 18.5203i 0.951322i −0.879629 0.475661i \(-0.842209\pi\)
0.879629 0.475661i \(-0.157791\pi\)
\(380\) 0 0
\(381\) 11.4564 + 6.61438i 0.586931 + 0.338865i
\(382\) −2.41742 + 14.7701i −0.123686 + 0.755704i
\(383\) −13.7477 + 7.93725i −0.702476 + 0.405575i −0.808269 0.588813i \(-0.799595\pi\)
0.105793 + 0.994388i \(0.466262\pi\)
\(384\) 24.5000 + 17.1974i 1.25026 + 0.877600i
\(385\) 0 0
\(386\) 28.0000 10.5830i 1.42516 0.538661i
\(387\) 4.00000 + 6.92820i 0.203331 + 0.352180i
\(388\) −2.76951 13.7233i −0.140600 0.696697i
\(389\) −9.00000 + 15.5885i −0.456318 + 0.790366i −0.998763 0.0497253i \(-0.984165\pi\)
0.542445 + 0.840091i \(0.317499\pi\)
\(390\) 0 0
\(391\) 28.0000 1.41602
\(392\) 12.8131 + 15.0939i 0.647158 + 0.762356i
\(393\) 37.0405i 1.86845i
\(394\) 8.68693 + 7.10895i 0.437641 + 0.358144i
\(395\) 0 0
\(396\) 17.5826 19.8709i 0.883558 0.998551i
\(397\) −14.0000 24.2487i −0.702640 1.21701i −0.967537 0.252731i \(-0.918671\pi\)
0.264897 0.964277i \(-0.414662\pi\)
\(398\) 14.0000 5.29150i 0.701757 0.265239i
\(399\) 0 0
\(400\) −2.50000 + 19.8431i −0.125000 + 0.992157i
\(401\) 13.5000 + 23.3827i 0.674158 + 1.16768i 0.976714 + 0.214544i \(0.0688266\pi\)
−0.302556 + 0.953131i \(0.597840\pi\)
\(402\) −9.76951 1.59898i −0.487259 0.0797497i
\(403\) −14.0000 + 24.2487i −0.697390 + 1.20791i
\(404\) −5.06080 + 15.0462i −0.251784 + 0.748577i
\(405\) 0 0
\(406\) −22.8131 + 19.0148i −1.13219 + 0.943690i
\(407\) 16.0000 + 21.1660i 0.793091 + 1.04916i
\(408\) 1.46099 + 39.5710i 0.0723295 + 1.95906i
\(409\) −32.0780 18.5203i −1.58616 0.915768i −0.993932 0.109995i \(-0.964917\pi\)
−0.592224 0.805773i \(-0.701750\pi\)
\(410\) 0 0
\(411\) −6.87386 + 3.96863i −0.339063 + 0.195758i
\(412\) −7.00000 7.93725i −0.344865 0.391040i
\(413\) 4.58258 5.29150i 0.225494 0.260378i
\(414\) −28.0000 + 10.5830i −1.37612 + 0.520126i
\(415\) 0 0
\(416\) 14.3521 + 4.24473i 0.703669 + 0.208115i
\(417\) 32.0780 + 18.5203i 1.57087 + 0.906941i
\(418\) 0 0
\(419\) 5.29150i 0.258507i 0.991612 + 0.129253i \(0.0412581\pi\)
−0.991612 + 0.129253i \(0.958742\pi\)
\(420\) 0 0
\(421\) 12.0000 0.584844 0.292422 0.956289i \(-0.405539\pi\)
0.292422 + 0.956289i \(0.405539\pi\)
\(422\) −1.79129 + 2.18890i −0.0871985 + 0.106554i
\(423\) 0 0
\(424\) −9.58258 + 6.01450i −0.465371 + 0.292090i
\(425\) −22.9129 + 13.2288i −1.11144 + 0.641689i
\(426\) −7.00000 18.5203i −0.339151 0.897309i
\(427\) 2.29129 + 6.61438i 0.110883 + 0.320092i
\(428\) 12.0000 10.5830i 0.580042 0.511549i
\(429\) 9.03901 21.3845i 0.436408 1.03245i
\(430\) 0 0
\(431\) 1.50000 2.59808i 0.0722525 0.125145i −0.827636 0.561266i \(-0.810315\pi\)
0.899888 + 0.436121i \(0.143648\pi\)
\(432\) −4.10436 9.75470i −0.197471 0.469323i
\(433\) −14.0000 −0.672797 −0.336399 0.941720i \(-0.609209\pi\)
−0.336399 + 0.941720i \(0.609209\pi\)
\(434\) −6.74773 39.0188i −0.323901 1.87296i
\(435\) 0 0
\(436\) −6.74773 + 20.0616i −0.323158 + 0.960777i
\(437\) 0 0
\(438\) 39.0780 + 6.39590i 1.86722 + 0.305608i
\(439\) −17.5000 30.3109i −0.835229 1.44666i −0.893843 0.448379i \(-0.852001\pi\)
0.0586141 0.998281i \(-0.481332\pi\)
\(440\) 0 0
\(441\) −4.00000 27.7128i −0.190476 1.31966i
\(442\) 7.00000 + 18.5203i 0.332956 + 0.880919i
\(443\) −32.0780 + 18.5203i −1.52407 + 0.879924i −0.524479 + 0.851423i \(0.675740\pi\)
−0.999594 + 0.0285009i \(0.990927\pi\)
\(444\) 41.4955 8.37420i 1.96929 0.397422i
\(445\) 0 0
\(446\) 17.3739 + 14.2179i 0.822676 + 0.673237i
\(447\) 28.0000 1.32435
\(448\) −19.4347 + 8.38415i −0.918201 + 0.396114i
\(449\) −30.0000 −1.41579 −0.707894 0.706319i \(-0.750354\pi\)
−0.707894 + 0.706319i \(0.750354\pi\)
\(450\) 17.9129 21.8890i 0.844421 1.03186i
\(451\) 0 0
\(452\) 7.51723 + 37.2490i 0.353581 + 1.75205i
\(453\) 38.9519 22.4889i 1.83012 1.05662i
\(454\) −7.00000 18.5203i −0.328526 0.869199i
\(455\) 0 0
\(456\) 0 0
\(457\) −4.58258 + 2.64575i −0.214364 + 0.123763i −0.603338 0.797486i \(-0.706163\pi\)
0.388974 + 0.921249i \(0.372830\pi\)
\(458\) −19.5390 3.19795i −0.912998 0.149430i
\(459\) 7.00000 12.1244i 0.326732 0.565916i
\(460\) 0 0
\(461\) 7.93725i 0.369675i −0.982769 0.184837i \(-0.940824\pi\)
0.982769 0.184837i \(-0.0591758\pi\)
\(462\) 9.54356 + 31.4153i 0.444007 + 1.46157i
\(463\) 21.1660i 0.983668i −0.870689 0.491834i \(-0.836327\pi\)
0.870689 0.491834i \(-0.163673\pi\)
\(464\) −12.3131 29.2641i −0.571620 1.35855i
\(465\) 0 0
\(466\) −3.62614 + 22.1552i −0.167978 + 1.02632i
\(467\) 13.7477 7.93725i 0.636169 0.367292i −0.146968 0.989141i \(-0.546952\pi\)
0.783137 + 0.621849i \(0.213618\pi\)
\(468\) −14.0000 15.8745i −0.647150 0.733799i
\(469\) 4.58258 5.29150i 0.211604 0.244339i
\(470\) 0 0
\(471\) 32.0780 18.5203i 1.47808 0.853368i
\(472\) 3.97822 + 6.33828i 0.183112 + 0.291743i
\(473\) 6.58258 0.818350i 0.302667 0.0376278i
\(474\) 37.6434 + 30.8055i 1.72902 + 1.41494i
\(475\) 0 0
\(476\) −24.3739 13.7810i −1.11717 0.631649i
\(477\) 16.0000 0.732590
\(478\) 17.0172 20.7946i 0.778350 0.951121i
\(479\) 10.5000 18.1865i 0.479757 0.830964i −0.519973 0.854183i \(-0.674058\pi\)
0.999730 + 0.0232187i \(0.00739140\pi\)
\(480\) 0 0
\(481\) 18.3303 10.5830i 0.835790 0.482544i
\(482\) −7.00000 + 2.64575i −0.318841 + 0.120511i
\(483\) 7.00000 36.3731i 0.318511 1.65503i
\(484\) −9.50000 19.8431i −0.431818 0.901961i
\(485\) 0 0
\(486\) 4.83485 29.5402i 0.219313 1.33997i
\(487\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(488\) −7.47822 + 0.276100i −0.338523 + 0.0124985i
\(489\) 7.00000 0.316551
\(490\) 0 0
\(491\) −26.0000 −1.17336 −0.586682 0.809818i \(-0.699566\pi\)
−0.586682 + 0.809818i \(0.699566\pi\)
\(492\) 0 0
\(493\) 21.0000 36.3731i 0.945792 1.63816i
\(494\) 0 0
\(495\) 0 0
\(496\) 42.0000 + 5.29150i 1.88586 + 0.237595i
\(497\) 13.7477 + 2.64575i 0.616670 + 0.118678i
\(498\) 0 0
\(499\) 22.9129 13.2288i 1.02572 0.592200i 0.109965 0.993935i \(-0.464926\pi\)
0.915756 + 0.401735i \(0.131593\pi\)
\(500\) 0 0
\(501\) −48.1170 27.7804i −2.14971 1.24114i
\(502\) −17.3739 14.2179i −0.775433 0.634576i
\(503\) −7.00000 −0.312115 −0.156057 0.987748i \(-0.549878\pi\)
−0.156057 + 0.987748i \(0.549878\pi\)
\(504\) 29.5826 + 4.56850i 1.31771 + 0.203497i
\(505\) 0 0
\(506\) −0.956439 + 24.8009i −0.0425189 + 1.10254i
\(507\) 13.7477 + 7.93725i 0.610558 + 0.352506i
\(508\) −1.97822 9.80238i −0.0877693 0.434910i
\(509\) 7.00000 + 12.1244i 0.310270 + 0.537403i 0.978421 0.206623i \(-0.0662474\pi\)
−0.668151 + 0.744026i \(0.732914\pi\)
\(510\) 0 0
\(511\) −18.3303 + 21.1660i −0.810885 + 0.936329i
\(512\) −2.50000 22.4889i −0.110485 0.993878i
\(513\) 0 0
\(514\) 9.76951 + 1.59898i 0.430915 + 0.0705278i
\(515\) 0 0
\(516\) 3.37386 10.0308i 0.148526 0.441582i
\(517\) 0 0
\(518\) −10.3303 + 28.0942i −0.453887 + 1.23439i
\(519\) −35.0000 −1.53633
\(520\) 0 0
\(521\) 21.0000 36.3731i 0.920027 1.59353i 0.120656 0.992694i \(-0.461500\pi\)
0.799370 0.600839i \(-0.205167\pi\)
\(522\) −7.25227 + 44.3103i −0.317423 + 1.93941i
\(523\) 7.00000 + 12.1244i 0.306089 + 0.530161i 0.977503 0.210921i \(-0.0676463\pi\)
−0.671414 + 0.741082i \(0.734313\pi\)
\(524\) −21.0000 + 18.5203i −0.917389 + 0.809061i
\(525\) 11.4564 + 33.0719i 0.500000 + 1.44338i
\(526\) −5.50000 14.5516i −0.239811 0.634481i
\(527\) 28.0000 + 48.4974i 1.21970 + 2.11258i
\(528\) −35.0998 0.0576255i −1.52752 0.00250783i
\(529\) 2.50000 4.33013i 0.108696 0.188266i
\(530\) 0 0
\(531\) 10.5830i 0.459263i
\(532\) 0 0
\(533\) 0 0
\(534\) 40.5390 + 33.1751i 1.75429 + 1.43563i
\(535\) 0 0
\(536\) 3.97822 + 6.33828i 0.171833 + 0.273772i
\(537\) 10.5000 + 18.1865i 0.453108 + 0.784807i
\(538\) 14.0000 + 37.0405i 0.603583 + 1.59693i
\(539\) −22.4564 5.89138i −0.967267 0.253760i
\(540\) 0 0
\(541\) 20.6216 11.9059i 0.886591 0.511874i 0.0137654 0.999905i \(-0.495618\pi\)
0.872826 + 0.488031i \(0.162285\pi\)
\(542\) −9.76951 1.59898i −0.419636 0.0686819i
\(543\) 0 0
\(544\) 21.7042 20.6138i 0.930558 0.883810i
\(545\) 0 0
\(546\) 25.8085 4.46320i 1.10450 0.191007i
\(547\) −2.00000 −0.0855138 −0.0427569 0.999086i \(-0.513614\pi\)
−0.0427569 + 0.999086i \(0.513614\pi\)
\(548\) 5.68693 + 1.91280i 0.242934 + 0.0817108i
\(549\) 9.16515 + 5.29150i 0.391159 + 0.225836i
\(550\) −10.9347 20.7469i −0.466255 0.884650i
\(551\) 0 0
\(552\) 35.0000 + 18.5203i 1.48970 + 0.788275i
\(553\) −32.5000 + 11.2583i −1.38204 + 0.478753i
\(554\) 17.5000 6.61438i 0.743504 0.281018i
\(555\) 0 0
\(556\) −5.53901 27.4467i −0.234907 1.16400i
\(557\) −9.16515 5.29150i −0.388340 0.224208i 0.293101 0.956082i \(-0.405313\pi\)
−0.681441 + 0.731873i \(0.738646\pi\)
\(558\) −46.3303 37.9144i −1.96132 1.60505i
\(559\) 5.29150i 0.223807i
\(560\) 0 0
\(561\) −28.0000 37.0405i −1.18216 1.56385i
\(562\) −17.3739 14.2179i −0.732872 0.599746i
\(563\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 14.0000 + 37.0405i 0.588464 + 1.55693i
\(567\) 10.0000 + 8.66025i 0.419961 + 0.363696i
\(568\) −7.00000 + 13.2288i −0.293713 + 0.555066i
\(569\) 27.4955 15.8745i 1.15267 0.665494i 0.203133 0.979151i \(-0.434888\pi\)
0.949536 + 0.313657i \(0.101554\pi\)
\(570\) 0 0
\(571\) 9.00000 15.5885i 0.376638 0.652357i −0.613933 0.789359i \(-0.710413\pi\)
0.990571 + 0.137002i \(0.0437466\pi\)
\(572\) −16.6434 + 5.56760i −0.695894 + 0.232793i
\(573\) −28.0000 −1.16972
\(574\) 0 0
\(575\) 26.4575i 1.10335i
\(576\) −13.9129 + 28.8172i −0.579703 + 1.20072i
\(577\) −17.5000 + 30.3109i −0.728535 + 1.26186i 0.228968 + 0.973434i \(0.426465\pi\)
−0.957503 + 0.288425i \(0.906868\pi\)
\(578\) 15.3521 + 2.51268i 0.638562 + 0.104514i
\(579\) 28.0000 + 48.4974i 1.16364 + 2.01548i
\(580\) 0 0
\(581\) 0 0
\(582\) 24.5000 9.26013i 1.01556 0.383845i
\(583\) 5.16515 12.2197i 0.213919 0.506089i
\(584\) −15.9129 25.3531i −0.658480 1.04912i
\(585\) 0 0
\(586\) −23.1652 18.9572i −0.956944 0.783115i
\(587\) 7.93725i 0.327606i −0.986493 0.163803i \(-0.947624\pi\)
0.986493 0.163803i \(-0.0523761\pi\)
\(588\) −23.9955 + 28.2173i −0.989556 + 1.16366i
\(589\) 0 0
\(590\) 0 0
\(591\) −10.5000 + 18.1865i −0.431912 + 0.748094i
\(592\) −25.4955 19.3386i −1.04786 0.794812i
\(593\) −13.7477 + 7.93725i −0.564551 + 0.325944i −0.754970 0.655759i \(-0.772349\pi\)
0.190419 + 0.981703i \(0.439015\pi\)
\(594\) 10.5000 + 6.61438i 0.430820 + 0.271391i
\(595\) 0 0
\(596\) −14.0000 15.8745i −0.573462 0.650245i
\(597\) 14.0000 + 24.2487i 0.572982 + 0.992434i
\(598\) 19.5390 + 3.19795i 0.799010 + 0.130774i
\(599\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(600\) −37.3911 + 1.38050i −1.52649 + 0.0563587i
\(601\) 42.3320i 1.72676i 0.504555 + 0.863380i \(0.331657\pi\)
−0.504555 + 0.863380i \(0.668343\pi\)
\(602\) 4.79129 + 5.74835i 0.195278 + 0.234285i
\(603\) 10.5830i 0.430973i
\(604\) −32.2259 10.8392i −1.31126 0.441041i
\(605\) 0 0
\(606\) −29.3085 4.79693i −1.19058 0.194862i
\(607\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(608\) 0 0
\(609\) −42.0000 36.3731i −1.70193 1.47391i
\(610\) 0 0
\(611\) 0 0
\(612\) −41.4955 + 8.37420i −1.67735 + 0.338507i
\(613\) −36.6606 21.1660i −1.48071 0.854887i −0.480947 0.876750i \(-0.659707\pi\)
−0.999761 + 0.0218626i \(0.993040\pi\)
\(614\) −25.0780 + 30.6446i −1.01207 + 1.23672i
\(615\) 0 0
\(616\) 13.0390 21.1183i 0.525357 0.850882i
\(617\) −23.0000 −0.925945 −0.462973 0.886373i \(-0.653217\pi\)
−0.462973 + 0.886373i \(0.653217\pi\)
\(618\) 12.5390 15.3223i 0.504393 0.616354i
\(619\) 4.58258 + 2.64575i 0.184189 + 0.106342i 0.589259 0.807944i \(-0.299420\pi\)
−0.405070 + 0.914286i \(0.632753\pi\)
\(620\) 0 0
\(621\) −7.00000 12.1244i −0.280900 0.486534i
\(622\) 14.0000 5.29150i 0.561349 0.212170i
\(623\) −35.0000 + 12.1244i −1.40225 + 0.485752i
\(624\) −3.50000 + 27.7804i −0.140112 + 1.11211i
\(625\) −12.5000 21.6506i −0.500000 0.866025i
\(626\) 29.3085 + 4.79693i 1.17140 + 0.191724i
\(627\) 0 0
\(628\) −26.5390 8.92640i −1.05902 0.356202i
\(629\) 42.3320i 1.68789i
\(630\) 0 0
\(631\) 26.4575i 1.05326i −0.850096 0.526628i \(-0.823456\pi\)
0.850096 0.526628i \(-0.176544\pi\)
\(632\) −1.35663 36.7445i −0.0539638 1.46162i
\(633\) −4.58258 2.64575i −0.182141 0.105159i
\(634\) 8.37386 + 1.37055i 0.332569 + 0.0544315i
\(635\) 0 0
\(636\) −14.0000 15.8745i −0.555136 0.629465i
\(637\) −6.87386 + 17.1974i −0.272352 + 0.681385i
\(638\) 31.5000 + 19.8431i 1.24710 + 0.785597i
\(639\) 18.3303 10.5830i 0.725136 0.418657i
\(640\) 0 0
\(641\) 5.50000 9.52628i 0.217237 0.376265i −0.736725 0.676192i \(-0.763629\pi\)
0.953962 + 0.299927i \(0.0969622\pi\)
\(642\) 23.1652 + 18.9572i 0.914256 + 0.748181i
\(643\) 18.5203i 0.730368i 0.930935 + 0.365184i \(0.118994\pi\)
−0.930935 + 0.365184i \(0.881006\pi\)
\(644\) −24.1216 + 14.2179i −0.950524 + 0.560264i
\(645\) 0 0
\(646\) 0 0
\(647\) 27.4955 + 15.8745i 1.08096 + 0.624091i 0.931155 0.364625i \(-0.118803\pi\)
0.149803 + 0.988716i \(0.452136\pi\)
\(648\) −11.9782 + 7.51813i −0.470549 + 0.295340i
\(649\) −8.08258 3.41643i −0.317269 0.134106i
\(650\) −17.5000 + 6.61438i −0.686406 + 0.259437i
\(651\) 70.0000 24.2487i 2.74352 0.950382i
\(652\) −3.50000 3.96863i −0.137071 0.155423i
\(653\) −4.00000 6.92820i −0.156532 0.271122i 0.777084 0.629397i \(-0.216698\pi\)
−0.933616 + 0.358276i \(0.883365\pi\)
\(654\) −39.0780 6.39590i −1.52807 0.250100i
\(655\) 0 0
\(656\) 0 0
\(657\) 42.3320i 1.65153i
\(658\) 0 0
\(659\) −26.0000 −1.01282 −0.506408 0.862294i \(-0.669027\pi\)
−0.506408 + 0.862294i \(0.669027\pi\)
\(660\) 0 0
\(661\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(662\) −5.43920 + 33.2327i −0.211401 + 1.29163i
\(663\) −32.0780 + 18.5203i −1.24581 + 0.719267i
\(664\) 0 0
\(665\) 0 0
\(666\) 16.0000 + 42.3320i 0.619987 + 1.64033i
\(667\) −21.0000 36.3731i −0.813123 1.40837i
\(668\) 8.30852 + 41.1700i 0.321466 + 1.59291i
\(669\) −21.0000 + 36.3731i −0.811907 + 1.40626i
\(670\) 0 0
\(671\) 7.00000 5.29150i 0.270232 0.204276i
\(672\) −21.3521 33.3480i −0.823674 1.28643i
\(673\) 31.7490i 1.22383i 0.790922 + 0.611917i \(0.209601\pi\)
−0.790922 + 0.611917i \(0.790399\pi\)
\(674\) 17.3739 + 14.2179i 0.669216 + 0.547653i
\(675\) 11.4564 + 6.61438i 0.440959 + 0.254588i
\(676\) −2.37386 11.7629i −0.0913024 0.452418i
\(677\) 27.4955 15.8745i 1.05674 0.610107i 0.132209 0.991222i \(-0.457793\pi\)
0.924528 + 0.381115i \(0.124460\pi\)
\(678\) −66.5000 + 25.1346i −2.55392 + 0.965290i
\(679\) −3.50000 + 18.1865i −0.134318 + 0.697935i
\(680\) 0 0
\(681\) 32.0780 18.5203i 1.22923 0.709698i
\(682\) −43.9129 + 23.1443i −1.68151 + 0.886241i
\(683\) 20.6216 + 11.9059i 0.789063 + 0.455566i 0.839633 0.543155i \(-0.182770\pi\)
−0.0505694 + 0.998721i \(0.516104\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −8.10436 24.9062i −0.309426 0.950924i
\(687\) 37.0405i 1.41318i
\(688\) −7.37386 + 3.10260i −0.281126 + 0.118286i
\(689\) −9.16515 5.29150i −0.349164 0.201590i
\(690\) 0 0
\(691\) −2.29129 + 1.32288i −0.0871647 + 0.0503246i −0.542949 0.839766i \(-0.682692\pi\)
0.455784 + 0.890090i \(0.349359\pi\)
\(692\) 17.5000 + 19.8431i 0.665250 + 0.754323i
\(693\) −31.4955 + 15.4931i −1.19641 + 0.588534i
\(694\) 9.00000 + 23.8118i 0.341635 + 0.903882i
\(695\) 0 0
\(696\) 50.3085 31.5761i 1.90694 1.19689i
\(697\) 0 0
\(698\) 11.5826 + 9.47860i 0.438407 + 0.358770i
\(699\) −42.0000 −1.58859
\(700\) 13.0218 23.0311i 0.492177 0.870495i
\(701\) 34.3948i 1.29907i 0.760331 + 0.649536i \(0.225037\pi\)
−0.760331 + 0.649536i \(0.774963\pi\)
\(702\) 6.26951 7.66115i 0.236627 0.289152i
\(703\) 0 0
\(704\) 17.5172 + 19.9285i 0.660206 + 0.751085i
\(705\) 0 0
\(706\) 7.00000 + 18.5203i 0.263448 + 0.697019i
\(707\) 13.7477 15.8745i 0.517036 0.597022i
\(708\) −10.5000 + 9.26013i −0.394614 + 0.348017i
\(709\) −4.00000 6.92820i −0.150223 0.260194i 0.781086 0.624423i \(-0.214666\pi\)
−0.931309 + 0.364229i \(0.881333\pi\)
\(710\) 0 0
\(711\) −26.0000 + 45.0333i −0.975076 + 1.68888i
\(712\) −1.46099 39.5710i −0.0547527 1.48299i
\(713\) 56.0000 2.09722
\(714\) 18.0780 49.1649i 0.676553 1.83995i
\(715\) 0 0
\(716\) 5.06080 15.0462i 0.189131 0.562303i
\(717\) 43.5345 + 25.1346i 1.62582 + 0.938670i
\(718\) −20.9347 3.42638i −0.781275 0.127871i
\(719\) −27.4955 + 15.8745i −1.02541 + 0.592019i −0.915666 0.401941i \(-0.868336\pi\)
−0.109742 + 0.993960i \(0.535002\pi\)
\(720\) 0 0
\(721\) 4.58258 + 13.2288i 0.170664 + 0.492665i
\(722\) −9.50000 25.1346i −0.353553 0.935414i
\(723\) −7.00000 12.1244i −0.260333 0.450910i
\(724\) 0 0
\(725\) 34.3693 + 19.8431i 1.27644 + 0.736956i
\(726\) 33.7650 23.5357i 1.25314 0.873490i
\(727\) 21.1660i 0.785004i −0.919751 0.392502i \(-0.871610\pi\)
0.919751 0.392502i \(-0.128390\pi\)
\(728\) −15.4347 12.4005i −0.572047 0.459591i
\(729\) 41.0000 1.51852
\(730\) 0 0
\(731\) −9.16515 5.29150i −0.338985 0.195713i
\(732\) −2.76951 13.7233i −0.102364 0.507229i
\(733\) 11.4564 6.61438i 0.423153 0.244308i −0.273272 0.961937i \(-0.588106\pi\)
0.696426 + 0.717629i \(0.254773\pi\)
\(734\) 21.0000 7.93725i 0.775124 0.292969i
\(735\) 0 0
\(736\) −7.00000 29.1033i −0.258023 1.07276i
\(737\) −8.08258 3.41643i −0.297726 0.125846i
\(738\) 0 0
\(739\) 23.0000 39.8372i 0.846069 1.46543i −0.0386212 0.999254i \(-0.512297\pi\)
0.884690 0.466180i \(-0.154370\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 14.7477 2.55040i 0.541406 0.0936282i
\(743\) 12.0000 0.440237 0.220119 0.975473i \(-0.429356\pi\)
0.220119 + 0.975473i \(0.429356\pi\)
\(744\) 2.92197 + 79.1420i 0.107125 + 2.90149i
\(745\) 0 0
\(746\) −5.43920 + 33.2327i −0.199143 + 1.21674i
\(747\) 0 0
\(748\) −7.00000 + 34.3948i −0.255945 + 1.25760i
\(749\) −20.0000 + 6.92820i −0.730784 + 0.253151i
\(750\) 0 0
\(751\) 41.2432 23.8118i 1.50499 0.868904i 0.505002 0.863118i \(-0.331492\pi\)
0.999983 0.00578524i \(-0.00184151\pi\)
\(752\) 0 0
\(753\) 21.0000 36.3731i 0.765283 1.32551i
\(754\) 18.8085 22.9835i 0.684966 0.837008i
\(755\) 0 0
\(756\) 0.126136 + 13.9994i 0.00458754 + 0.509154i
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) −20.2695 16.5876i −0.736222 0.602487i
\(759\) −46.0780 + 5.72845i −1.67253 + 0.207930i
\(760\) 0 0
\(761\) −13.7477 + 7.93725i −0.498355 + 0.287725i −0.728034 0.685541i \(-0.759566\pi\)
0.229679 + 0.973266i \(0.426232\pi\)
\(762\) 17.5000 6.61438i 0.633958 0.239614i
\(763\) 18.3303 21.1660i 0.663602 0.766261i
\(764\) 14.0000 + 15.8745i 0.506502 + 0.574320i
\(765\) 0 0
\(766\) −3.62614 + 22.1552i −0.131018 + 0.800498i
\(767\) −3.50000 + 6.06218i −0.126378 + 0.218893i
\(768\) 40.7650 11.4113i 1.47098 0.411770i
\(769\) 47.6235i 1.71735i −0.512522 0.858674i \(-0.671289\pi\)
0.512522 0.858674i \(-0.328711\pi\)
\(770\) 0 0
\(771\) 18.5203i 0.666991i
\(772\) 13.4955 40.1232i 0.485712 1.44407i
\(773\) 7.00000 12.1244i 0.251773 0.436083i −0.712241 0.701935i \(-0.752320\pi\)
0.964014 + 0.265852i \(0.0856532\pi\)
\(774\) 11.1652 + 1.82740i 0.401323 + 0.0656846i
\(775\) −45.8258 + 26.4575i −1.64611 + 0.950382i
\(776\) −17.5000 9.26013i −0.628213 0.332419i
\(777\) −54.9909 10.5830i −1.97279 0.379663i
\(778\) 9.00000 + 23.8118i 0.322666 + 0.853693i
\(779\) 0 0
\(780\) 0 0
\(781\) −2.16515 17.4159i −0.0774752 0.623188i
\(782\) 25.0780 30.6446i 0.896789 1.09585i
\(783\) −21.0000 −0.750479
\(784\) 27.9955 0.504525i 0.999838 0.0180188i
\(785\) 0 0
\(786\) −40.5390 33.1751i −1.44598 1.18332i
\(787\) 7.00000 12.1244i 0.249523 0.432187i −0.713871 0.700278i \(-0.753059\pi\)
0.963394 + 0.268091i \(0.0863928\pi\)
\(788\) 15.5608 3.14033i 0.554330 0.111869i
\(789\) 25.2042 14.5516i 0.897292 0.518052i
\(790\) 0 0
\(791\) 9.50000 49.3634i 0.337781 1.75516i
\(792\) −6.00000 37.0405i −0.213201 1.31618i
\(793\) −3.50000 6.06218i −0.124289 0.215274i
\(794\) −39.0780 6.39590i −1.38683 0.226982i
\(795\) 0 0
\(796\) 6.74773 20.0616i 0.239167 0.711065i
\(797\) 14.0000 0.495905 0.247953 0.968772i \(-0.420242\pi\)
0.247953 + 0.968772i \(0.420242\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 19.4782 + 20.5085i 0.688659 + 0.725085i
\(801\) −28.0000 + 48.4974i −0.989331 + 1.71357i
\(802\) 37.6824 + 6.16748i 1.33061 + 0.217781i
\(803\) 32.3303 + 13.6657i 1.14091 + 0.482252i
\(804\) −10.5000 + 9.26013i −0.370306 + 0.326580i
\(805\) 0 0
\(806\) 14.0000 + 37.0405i 0.493129 + 1.30470i
\(807\) −64.1561 + 37.0405i −2.25840 + 1.30389i
\(808\) 11.9347 + 19.0148i 0.419860 + 0.668940i
\(809\) −27.4955 15.8745i −0.966689 0.558118i −0.0684635 0.997654i \(-0.521810\pi\)
−0.898225 + 0.439536i \(0.855143\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0.378409 + 41.9983i 0.0132796 + 1.47385i
\(813\) 18.5203i 0.649534i
\(814\) 37.4955 + 1.44600i 1.31421 + 0.0506823i
\(815\) 0 0
\(816\) 44.6170 + 33.8426i 1.56191 + 1.18473i
\(817\) 0 0
\(818\) −49.0000 + 18.5203i −1.71324 + 0.647546i
\(819\) 9.16515 + 26.4575i 0.320256 + 0.924500i
\(820\) 0 0
\(821\) 29.7867 17.1974i 1.03956 0.600193i 0.119855 0.992791i \(-0.461757\pi\)
0.919710 + 0.392599i \(0.128424\pi\)
\(822\) −1.81307 + 11.0776i −0.0632380 + 0.386375i
\(823\) −9.16515 5.29150i −0.319477 0.184450i 0.331682 0.943391i \(-0.392384\pi\)
−0.651159 + 0.758941i \(0.725717\pi\)
\(824\) −14.9564 + 0.552200i −0.521032 + 0.0192368i
\(825\) 35.0000 26.4575i 1.21854 0.921132i
\(826\) −1.68693 9.75470i −0.0586959 0.339410i
\(827\) −26.0000 −0.904109 −0.452054 0.891990i \(-0.649309\pi\)
−0.452054 + 0.891990i \(0.649309\pi\)
\(828\) −13.4955 + 40.1232i −0.468999 + 1.39438i
\(829\) −21.0000 + 36.3731i −0.729360 + 1.26329i 0.227794 + 0.973709i \(0.426849\pi\)
−0.957154 + 0.289579i \(0.906485\pi\)
\(830\) 0 0
\(831\) 17.5000 + 30.3109i 0.607068 + 1.05147i
\(832\) 17.5000 11.9059i 0.606703 0.412762i
\(833\) 22.9129 + 29.1033i 0.793884 + 1.00837i
\(834\) 49.0000 18.5203i 1.69673 0.641304i
\(835\) 0 0
\(836\) 0 0
\(837\) 14.0000 24.2487i 0.483911 0.838158i
\(838\) 5.79129 + 4.73930i 0.200057 + 0.163716i
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) −34.0000 −1.17241
\(842\) 10.7477 13.1334i 0.370391 0.452607i
\(843\) 21.0000 36.3731i 0.723278 1.25275i
\(844\) 0.791288 + 3.92095i 0.0272373 + 0.134965i
\(845\) 0 0
\(846\) 0 0
\(847\) 1.66515 + 29.0556i 0.0572153 + 0.998362i
\(848\) −2.00000 + 15.8745i −0.0686803 + 0.545133i
\(849\) −64.1561 + 37.0405i −2.20183 + 1.27123i
\(850\) −6.04356 + 36.9253i −0.207292 + 1.26653i
\(851\) −36.6606 21.1660i −1.25671 0.725561i
\(852\) −26.5390 8.92640i −0.909212 0.305814i
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 9.29129 + 3.41643i 0.317941 + 0.116908i
\(855\) 0 0
\(856\) −0.834849 22.6120i −0.0285345 0.772863i
\(857\) 18.3303 + 10.5830i 0.626151 + 0.361509i 0.779260 0.626701i \(-0.215595\pi\)
−0.153109 + 0.988209i \(0.548928\pi\)
\(858\) −15.3085 29.0456i −0.522624 0.991602i
\(859\) −16.0390 + 9.26013i −0.547244 + 0.315952i −0.748010 0.663688i \(-0.768990\pi\)
0.200766 + 0.979639i \(0.435657\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −1.50000 3.96863i −0.0510902 0.135172i
\(863\) 13.7477 7.93725i 0.467978 0.270187i −0.247415 0.968910i \(-0.579581\pi\)
0.715393 + 0.698722i \(0.246248\pi\)
\(864\) −14.3521 4.24473i −0.488268 0.144409i
\(865\) 0 0
\(866\) −12.5390 + 15.3223i −0.426093 + 0.520673i
\(867\) 29.1033i 0.988399i
\(868\) −48.7477 27.5619i −1.65461 0.935512i
\(869\) 26.0000 + 34.3948i 0.881990 + 1.16676i
\(870\) 0 0
\(871\) −3.50000 + 6.06218i −0.118593 + 0.205409i
\(872\) 15.9129 + 25.3531i 0.538878 + 0.858565i
\(873\) 14.0000 + 24.2487i 0.473828 + 0.820695i
\(874\) 0 0
\(875\) 0 0
\(876\) 42.0000 37.0405i 1.41905 1.25148i
\(877\) −11.4564 + 6.61438i −0.386856 + 0.223352i −0.680797 0.732472i \(-0.738367\pi\)
0.293941 + 0.955824i \(0.405033\pi\)
\(878\) −48.8475 7.99488i −1.64852 0.269814i
\(879\) 28.0000 48.4974i 0.944417 1.63578i
\(880\) 0 0
\(881\) 7.00000 0.235836 0.117918 0.993023i \(-0.462378\pi\)
0.117918 + 0.993023i \(0.462378\pi\)
\(882\) −33.9129 20.4430i −1.14191 0.688352i
\(883\) 34.3948i 1.15748i −0.815514 0.578738i \(-0.803545\pi\)
0.815514 0.578738i \(-0.196455\pi\)
\(884\) 26.5390 + 8.92640i 0.892604 + 0.300227i
\(885\) 0 0
\(886\) −8.46099 + 51.6954i −0.284252 + 1.73674i
\(887\) 24.5000 + 42.4352i 0.822629 + 1.42484i 0.903718 + 0.428129i \(0.140827\pi\)
−0.0810881 + 0.996707i \(0.525840\pi\)
\(888\) 28.0000 52.9150i 0.939618 1.77571i
\(889\) −2.50000 + 12.9904i −0.0838473 + 0.435683i
\(890\) 0 0
\(891\) 6.45644 15.2746i 0.216299 0.511719i
\(892\) 31.1216 6.28065i 1.04203 0.210292i
\(893\) 0 0
\(894\) 25.0780 30.6446i 0.838735 1.02491i
\(895\) 0 0
\(896\) −8.23049 + 28.7795i −0.274961 + 0.961455i
\(897\) 37.0405i 1.23675i
\(898\) −26.8693 + 32.8335i −0.896641 + 1.09567i
\(899\) 42.0000 72.7461i 1.40078 2.42622i
\(900\) −7.91288 39.2095i −0.263763 1.30698i
\(901\) −18.3303 + 10.5830i −0.610671 + 0.352571i
\(902\) 0 0
\(903\) −9.16515 + 10.5830i −0.304997 + 0.352180i
\(904\) 47.5000 + 25.1346i 1.57983 + 0.835966i
\(905\) 0 0
\(906\) 10.2741 62.7730i 0.341333 2.08549i
\(907\) −4.58258 2.64575i −0.152162 0.0878507i 0.421986 0.906602i \(-0.361333\pi\)
−0.574148 + 0.818752i \(0.694667\pi\)
\(908\) −26.5390 8.92640i −0.880728 0.296233i
\(909\) 31.7490i 1.05305i
\(910\) 0 0
\(911\) 15.8745i 0.525946i −0.964803 0.262973i \(-0.915297\pi\)
0.964803 0.262973i \(-0.0847030\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −1.20871 + 7.38505i −0.0399806 + 0.244276i
\(915\) 0 0
\(916\) −21.0000 + 18.5203i −0.693860 + 0.611927i
\(917\) 35.0000 12.1244i 1.15580 0.400381i
\(918\) −7.00000 18.5203i −0.231034 0.611260i
\(919\) 4.00000 + 6.92820i 0.131948 + 0.228540i 0.924427 0.381358i \(-0.124544\pi\)
−0.792480 + 0.609898i \(0.791210\pi\)
\(920\) 0 0
\(921\) −64.1561 37.0405i −2.11401 1.22053i
\(922\) −8.68693 7.10895i −0.286089 0.234121i
\(923\) −14.0000 −0.460816
\(924\) 42.9301 + 17.6920i 1.41230 + 0.582023i
\(925\) 40.0000 1.31519
\(926\) −23.1652 18.9572i −0.761254 0.622973i
\(927\) 18.3303 + 10.5830i 0.602046 + 0.347591i
\(928\) −43.0562 12.7342i −1.41339 0.418020i
\(929\) −17.5000 30.3109i −0.574156 0.994468i −0.996133 0.0878612i \(-0.971997\pi\)
0.421976 0.906607i \(-0.361337\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 21.0000 + 23.8118i 0.687878 + 0.779980i
\(933\) 14.0000 + 24.2487i 0.458339 + 0.793867i
\(934\) 3.62614 22.1552i 0.118651 0.724939i
\(935\) 0 0
\(936\) −29.9129 + 1.10440i −0.977733 + 0.0360985i
\(937\) 26.4575i 0.864329i 0.901795 + 0.432165i \(0.142250\pi\)
−0.901795 + 0.432165i \(0.857750\pi\)
\(938\) −1.68693 9.75470i −0.0550803 0.318502i
\(939\) 55.5608i 1.81316i
\(940\) 0 0
\(941\) 48.1170 + 27.7804i 1.56857 + 0.905615i 0.996336 + 0.0855250i \(0.0272567\pi\)
0.572235 + 0.820090i \(0.306077\pi\)
\(942\) 8.46099 51.6954i 0.275674 1.68433i
\(943\) 0 0
\(944\) 10.5000 + 1.32288i 0.341746 + 0.0430559i
\(945\) 0 0
\(946\) 5.00000 7.93725i 0.162564 0.258062i
\(947\) −13.7477 + 7.93725i −0.446741 + 0.257926i −0.706453 0.707760i \(-0.749706\pi\)
0.259712 + 0.965686i \(0.416372\pi\)
\(948\) 67.4301 13.6081i 2.19003 0.441970i
\(949\) 14.0000 24.2487i 0.454459 0.787146i
\(950\) 0 0
\(951\) 15.8745i 0.514766i
\(952\) −36.9129 + 14.3332i −1.19635 + 0.464540i
\(953\) 15.8745i 0.514226i −0.966381 0.257113i \(-0.917229\pi\)
0.966381 0.257113i \(-0.0827712\pi\)
\(954\) 14.3303 17.5112i 0.463961 0.566946i
\(955\) 0 0
\(956\) −7.51723 37.2490i −0.243125 1.20472i
\(957\) −27.1170 + 64.1535i −0.876570 + 2.07379i
\(958\) −10.5000 27.7804i −0.339240 0.897544i
\(959\) −6.00000 5.19615i −0.193750 0.167793i
\(960\) 0 0
\(961\) 40.5000 + 70.1481i 1.30645 + 2.26284i
\(962\) 4.83485 29.5402i 0.155882 0.952415i
\(963\) −16.0000 + 27.7128i −0.515593 + 0.893033i
\(964\) −3.37386 + 10.0308i −0.108665 + 0.323070i
\(965\) 0 0
\(966\) −33.5390 40.2385i −1.07910 1.29465i
\(967\) 16.0000 0.514525 0.257263 0.966342i \(-0.417179\pi\)
0.257263 + 0.966342i \(0.417179\pi\)
\(968\) −30.2259 7.37510i −0.971499 0.237045i
\(969\) 0 0
\(970\) 0 0
\(971\) 25.2042 14.5516i 0.808840 0.466984i −0.0377128 0.999289i \(-0.512007\pi\)
0.846553 + 0.532305i \(0.178674\pi\)
\(972\) −28.0000 31.7490i −0.898100 1.01835i
\(973\) −7.00000 + 36.3731i −0.224410 + 1.16607i
\(974\) 0 0
\(975\) −17.5000 30.3109i −0.560449 0.970725i
\(976\) −6.39564 + 8.43183i −0.204720 + 0.269896i
\(977\) 19.0000 32.9090i 0.607864 1.05285i −0.383728 0.923446i \(-0.625360\pi\)
0.991592 0.129405i \(-0.0413067\pi\)
\(978\) 6.26951 7.66115i 0.200477 0.244977i
\(979\) 28.0000 + 37.0405i 0.894884 + 1.18382i
\(980\) 0 0
\(981\) 42.3320i 1.35156i
\(982\) −23.2867 + 28.4557i −0.743110 + 0.908058i
\(983\) 41.2432 + 23.8118i 1.31545 + 0.759477i 0.982994 0.183640i \(-0.0587881\pi\)
0.332460 + 0.943117i \(0.392121\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −21.0000 55.5608i −0.668776 1.76942i
\(987\) 0 0
\(988\) 0 0
\(989\) −9.16515 + 5.29150i −0.291435 + 0.168260i
\(990\) 0 0
\(991\) −18.3303 10.5830i −0.582281 0.336180i 0.179758 0.983711i \(-0.442468\pi\)
−0.762039 + 0.647531i \(0.775802\pi\)
\(992\) 43.4083 41.2276i 1.37822 1.30898i
\(993\) −63.0000 −1.99924
\(994\) 15.2087 12.6766i 0.482391 0.402076i
\(995\) 0 0
\(996\) 0 0
\(997\) −45.8258 26.4575i −1.45132 0.837918i −0.452760 0.891632i \(-0.649561\pi\)
−0.998556 + 0.0537146i \(0.982894\pi\)
\(998\) 6.04356 36.9253i 0.191306 1.16885i
\(999\) −18.3303 + 10.5830i −0.579945 + 0.334831i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 308.2.n.a.263.2 yes 4
4.3 odd 2 308.2.n.b.263.2 yes 4
7.2 even 3 inner 308.2.n.a.219.1 4
11.10 odd 2 308.2.n.b.263.1 yes 4
28.23 odd 6 308.2.n.b.219.1 yes 4
44.43 even 2 inner 308.2.n.a.263.1 yes 4
77.65 odd 6 308.2.n.b.219.2 yes 4
308.219 even 6 inner 308.2.n.a.219.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
308.2.n.a.219.1 4 7.2 even 3 inner
308.2.n.a.219.2 yes 4 308.219 even 6 inner
308.2.n.a.263.1 yes 4 44.43 even 2 inner
308.2.n.a.263.2 yes 4 1.1 even 1 trivial
308.2.n.b.219.1 yes 4 28.23 odd 6
308.2.n.b.219.2 yes 4 77.65 odd 6
308.2.n.b.263.1 yes 4 11.10 odd 2
308.2.n.b.263.2 yes 4 4.3 odd 2